Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Lack of Gromov-hyperbolicity in small-world networks

100%
Open Mathematics
|
2012
|
tom 10
|
nr 3
1152-1158
EN
The geometry of complex networks is closely related with their structure and function. In this paper, we investigate the Gromov-hyperbolicity of the Newman-Watts model of small-world networks. It is known that asymptotic Erdős-Rényi random graphs are not hyperbolic. We show that the Newman-Watts ones built on top of them by adding lattice-induced clustering are not hyperbolic as the network size goes to infinity. Numerical simulations are provided to illustrate the effects of various parameters on hyperbolicity in this model.
2
Content available remote

Fractional virus epidemic model on financial networks

84%
Open Mathematics
|
2016
|
tom 14
|
nr 1
1074-1086
EN
In this study, we present an epidemic model that characterizes the behavior of a financial network of globally operating stock markets. Since the long time series have a global memory effect, we represent our model by using the fractional calculus. This model operates on a network, where vertices are the stock markets and edges are constructed by the correlation distances. Thereafter, we find an analytical solution to commensurate system and use the well-known differential transform method to obtain the solution of incommensurate system of fractional differential equations. Our findings are confirmed and complemented by the data set of the relevant stock markets between 2006 and 2016. Rather than the hypothetical values, we use the Hurst Exponent of each time series to approximate the fraction size and graph theoretical concepts to obtain the variables.
3
Content available remote

Non-hyperbolicity in random regular graphs and their traffic characteristics

84%
Open Mathematics
|
2013
|
tom 11
|
nr 9
1593-1597
EN
In this paper we prove that random d-regular graphs with d ≥ 3 have traffic congestion of the order O(n logd−13 n) where n is the number of nodes and geodesic routing is used. We also show that these graphs are not asymptotically δ-hyperbolic for any non-negative δ almost surely as n → ∞.
4
84%
Open Mathematics
|
2013
|
tom 11
|
nr 4
800-815
EN
Low dimensional ODE approximations that capture the main characteristics of SIS-type epidemic propagation along a cycle graph are derived. Three different methods are shown that can accurately predict the expected number of infected nodes in the graph. The first method is based on the derivation of a master equation for the number of infected nodes. This uses the average number of SI edges for a given number of the infected nodes. The second approach is based on the observation that the epidemic spreads along the cycle graph as a front. We introduce a continuous time Markov chain describing the evolution of the front. The third method we apply is the subsystem approximation using the edges as subsystems. Finally, we compare the steady state value of the number of infected nodes obtained in different ways.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.