In this paper, the α waybelow relation, which is determined by O2-convergence, is characterized by the order on a poset, and a sufficient and necessary condition for O2-convergence to be topological is obtained.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres) and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections).
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
If is a family of filters over some set I, a topological space X is sequencewise -compact if for every I-indexed sequence of elements of X there is such that the sequence has an F-limit point. Countable compactness, sequential compactness, initial κ-compactness, [λ; µ]-compactness, the Menger and Rothberger properties can all be expressed in terms of sequencewise -compactness for appropriate choices of . We show that sequencewise -compactness is preserved under taking products if and only if there is a filter such that sequencewise -compactness is equivalent to F-compactness. If this is the case, and there exists a sequencewise -compact T 1 topological space with more than one point, then F is necessarily an ultrafilter. The particular case of sequential compactness is analyzed in detail.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A space X is sequentially separable if there is a countable D ⊂ X such that every point of X is the limit of a sequence of points from D. Neither “sequential + separable” nor “sequentially separable” implies the other. Some examples of this are presented and some conditions under which one of the two implies the other are discussed. A selective version of sequential separability is also considered.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Hölzl et al. showed that it was possible to build “a generic theory of limits based on filters” in Isabelle/HOL [22], [7]. In this paper we present our formalization of this theory in Mizar [6]. First, we compare the notions of the limit of a family indexed by a directed set, or a sequence, in a metric space [30], a real normed linear space [29] and a linear topological space [14] with the concept of the limit of an image filter [16]. Then, following Bourbaki [9], [10] (TG.III, §5.1 Familles sommables dans un groupe commutatif), we conclude by defining the summable families in a commutative group (“additive notation” in [17]), using the notion of filters.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We consider ideal equal convergence of a sequence of functions. This is a generalization of equal convergence introduced by Császár and Laczkovich [Császár Á., Laczkovich M., Discrete and equal convergence, Studia Sci. Math. Hungar., 1975, 10(3–4), 463–472]. Our definition of ideal equal convergence encompasses two different kinds of ideal equal convergence introduced in [Das P., Dutta S., Pal S.K., On and *-equal convergence and an Egoroff-type theorem, Mat. Vesnik, 2014, 66(2), 165–177]_and [Filipów R., Szuca P., Three kinds of convergence and the associated I-Baire classes, J. Math. Anal. Appl., 2012, 391(1), 1–9]. We also solve a few problems posed in the paper by Das, Dutta and Pal.
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Given a free ultrafilter p on ℕ we say that x ∈ [0, 1] is the p-limit point of a sequence (x n)n∈ℕ ⊂ [0, 1] (in symbols, x = p -limn∈ℕ x n) if for every neighbourhood V of x, {n ∈ ℕ: x n ∈ V} ∈ p. For a function f: [0, 1] → [0, 1] the function f p: [0, 1] → [0, 1] is defined by f p(x) = p -limn∈ℕ f n(x) for each x ∈ [0, 1]. This map is rarely continuous. In this note we study properties which are equivalent to the continuity of f p. For a filter F we also define the ω F-limit set of f at x. We consider a question about continuity of the multivalued map x → ω fF(x). We point out some connections between the Baire class of f p and tame dynamical systems, and give some open problems.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.