Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Resistance Conditions and Applications

100%
EN
This paper studies analytic aspects of so-called resistance conditions on metric measure spaces with a doubling measure. These conditions are weaker than the usually assumed Poincaré inequality, but however, they are sufficiently strong to imply several useful results in analysis on metric measure spaces. We show that under a perimeter resistance condition, the capacity of order one and the Hausdorff content of codimension one are comparable. Moreover, we have connections to the Sobolev inequality for compactly supported Lipschitz functions on balls as well as capacitary strong type estimates for the Hardy-Littlewood maximal function. We also consider extensions to Sobolev type inequalities with two different measures and Lorentz type estimates.
2
Content available remote

The Lusin Theorem and Horizontal Graphs in the Heisenberg Group

100%
EN
In this paper we prove that every collection of measurable functions fα , |α| = m, coincides a.e. withmth order derivatives of a function g ∈ Cm−1 whose derivatives of order m − 1 may have any modulus of continuity weaker than that of a Lipschitz function. This is a stronger version of earlier results of Lusin, Moonens-Pfeffer and Francos. As an application we construct surfaces in the Heisenberg group with tangent spaces being horizontal a.e.
3
Content available remote

Fractional Maximal Functions in Metric Measure Spaces

100%
EN
We study the mapping properties of fractional maximal operators in Sobolev and Campanato spaces in metric measure spaces. We show that, under certain restrictions on the underlying metric measure space, fractional maximal operators improve the Sobolev regularity of functions and map functions in Campanato spaces to Hölder continuous functions. We also give an example of a space where fractional maximal function of a Lipschitz function fails to be continuous.
4
Content available remote

Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces

100%
EN
We establish trace theorems for function spaces defined on general Ahlfors regular metric spaces Z. The results cover the Triebel-Lizorkin spaces and the Besov spaces for smoothness indices s < 1, as well as the first order Hajłasz-Sobolev space M1,p(Z). They generalize the classical results from the Euclidean setting, since the traces of these function spaces onto any closed Ahlfors regular subset F ⊂ Z are Besov spaces defined intrinsically on F. Our method employs the definitions of the function spaces via hyperbolic fillings of the underlying metric space.
EN
We obtain Hardy type inequalities $$\int_0^\infty {M\left( {\omega \left( r \right)\left| {u\left( r \right)} \right|} \right)\rho \left( r \right)dr} \leqslant C_1 \int_0^\infty {M\left( {\left| {u\left( r \right)} \right|} \right)\rho \left( r \right)dr + C_2 \int_0^\infty {M\left( {\left| {u'\left( r \right)} \right|} \right)\rho \left( r \right)dr,} }$$ and their Orlicz-norm counterparts $$\left\| {\omega u} \right\|_{L^M (\mathbb{R}_ + ,\rho )} \leqslant \tilde C_1 \left\| u \right\|_{L^M (\mathbb{R}_ + ,\rho )} + \tilde C_2 \left\| {u'} \right\|_{L^M (\mathbb{R}_ + ,\rho )} ,$$ with an N-function M, power, power-logarithmic and power-exponential weights ω, ρ, holding on suitable dilation invariant supersets of C 0∞(ℝ+). Maximal sets of admissible functions u are described. This paper is based on authors’ earlier abstract results and applies them to particular classes of weights.
Open Mathematics
|
2014
|
tom 12
|
nr 1
114-127
EN
Let n ≥ 2 and let Ω ⊂ ℝn be an open set. We prove the boundedness of weak solutions to the problem $$u \in W_0^1 L^\Phi \left( \Omega \right) and - div\left( {\Phi '\left( {\left| {\nabla u} \right|} \right)\frac{{\nabla u}} {{\left| {\nabla u} \right|}}} \right) + V\left( x \right)\Phi '\left( {\left| u \right|} \right)\frac{u} {{\left| u \right|}} = f\left( {x,u} \right) + \mu h\left( x \right) in \Omega ,$$ where ϕ is a Young function such that the space W 01 L Φ(Ω) is embedded into an exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V(x) is a continuous potential, h ∈ L Φ(Ω) is a non-trivial continuous function and µ ≥ 0 is a small parameter. We consider two classical cases: the case of Ω being an open bounded set and the case of Ω = ℝn.
Open Mathematics
|
2012
|
tom 10
|
nr 2
590-602
EN
Let Ω ⊂ ℝn, n ≥ 2, be a bounded domain and let α < n − 1. Motivated by Theorem I.6 and Remark I.18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201] and by the results of [Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate of the exponent concerning the Concentration-Compactness Principle for the embedding of the Orlicz-Sobolev space W 01 L n logα L(Ω) into the Orlicz space corresponding to a Young function that behaves like exp t n/(n−1−α) for large t. We also give the result for the case of the embedding into double and other multiple exponential spaces.
EN
In Hörmander inner product spaces, we investigate initial-boundary value problems for an arbitrary second order parabolic partial differential equation and the Dirichlet or a general first-order boundary conditions. We prove that the operators corresponding to these problems are isomorphisms between appropriate Hörmander spaces. The regularity of the functions which form these spaces is characterized by a pair of number parameters and a function parameter varying regularly at infinity in the sense of Karamata. Owing to this function parameter, the Hörmander spaces describe the regularity of functions more finely than the anisotropic Sobolev spaces.
9
Content available remote

Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces

64%
EN
We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.
10
Content available remote

Composition operators on W 1 X are necessarily induced by quasiconformal mappings

64%
Open Mathematics
|
2014
|
tom 12
|
nr 8
1229-1238
EN
Let Ω ⊂ ℝn be an open set and X(Ω) be any rearrangement invariant function space close to L q(Ω), i.e. X has the q-scaling property. We prove that each homeomorphism f which induces the composition operator u ↦ u ℴ f from W 1 X to W 1 X is necessarily a q-quasiconformal mapping. We also give some new results for the sufficiency of this condition for the composition operator.
11
Content available remote

Integro-differential systems with variable exponents of nonlinearity

64%
EN
Some nonlinear integro-differential equations of fourth order with variable exponents of the nonlinearity are considered. The initial-boundary value problem for these equations is investigated and the existence theorem for the problem is proved.
12
Content available remote

Elliptic operators on refined Sobolev scales on vector bundles

64%
Open Mathematics
|
2017
|
tom 15
|
nr 1
907-925
EN
We introduce a refined Sobolev scale on a vector bundle over a closed infinitely smooth manifold. This scale consists of inner product Hörmander spaces parametrized with a real number and a function varying slowly at infinity in the sense of Karamata. We prove that these spaces are obtained by the interpolation with a function parameter between inner product Sobolev spaces. An arbitrary classical elliptic pseudodifferential operator acting between vector bundles of the same rank is investigated on this scale. We prove that this operator is bounded and Fredholm on pairs of appropriate Hörmander spaces. We also prove that the solutions to the corresponding elliptic equation satisfy a certain a priori estimate on these spaces. The local regularity of these solutions is investigated on the refined Sobolev scale. We find new sufficient conditions for the solutions to have continuous derivatives of a given order.
13
Content available remote

Sobolev-Kantorovich Inequalities

53%
EN
In a recent work, E. Cinti and F. Otto established some new interpolation inequalities in the study of pattern formation, bounding the Lr(μ)-norm of a probability density with respect to the reference measure μ by its Sobolev norm and the Kantorovich-Wasserstein distance to μ. This article emphasizes this family of interpolation inequalities, called Sobolev-Kantorovich inequalities, which may be established in the rather large setting of non-negatively curved (weighted) Riemannian manifolds by means of heat flows and Harnack inequalities.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.