Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

A comparison of some efficient numerical methods for a nonlinear elliptic problem

100%
Open Mathematics
|
2012
|
tom 10
|
nr 1
217-230
EN
The aim of this paper is to compare and realize three efficient iterative methods, which have mesh independent convergence, and to propose some improvements for them. We look for the numerical solution of a nonlinear model problem using FEM discretization with gradient and Newton type methods. Three numerical methods have been carried out, namely, the gradient, Newton and quasi-Newton methods. We have solved the model problem with these methods, we have investigated the differences between them and analyzed their behavior, efficiency and mesh independence. We also compare the theoretical results to the numerical ones, and finally we propose some improvements which we also investigate.
2
Content available remote

On the convergence of the secant method under the gamma condition

84%
Open Mathematics
|
2007
|
tom 5
|
nr 2
205-214
EN
We provide sufficient convergence conditions for the Secant method of approximating a locally unique solution of an operator equation in a Banach space. The main hypothesis is the gamma condition first introduced in [10] for the study of Newton’s method. Our sufficient convergence condition reduces to the one obtained in [10] for Newton’s method. A numerical example is also provided.
Open Mathematics
|
2008
|
tom 6
|
nr 2
262-271
EN
We re-examine a quadratically convergent method using divided differences of order one in order to approximate a locally unique solution of an equation in a Banach space setting [4, 5, 7]. Recently in [4, 5, 7], using Lipschitz conditions, and a Newton-Kantorovich type approach, we provided a local as well as a semilocal convergence analysis for this method which compares favorably to other methods using two function evaluations such as the Steffensen’s method [1, 3, 13]. Here, we provide an analysis of this method under the gamma condition [6, 7, 19, 20]. In particular, we also show the quadratic convergence of this method. Numerical examples further validating the theoretical results are also provided.
4
Content available remote

Quantum optimal control using the adjoint method

53%
EN
Control of quantum systems is central in a variety of present and perspective applications ranging from quantum optics and quantum chemistry to semiconductor nanostructures, including the emerging fields of quantum computation and quantum communication. In this paper, a review of recent developments in the field of optimal control of quantum systems is given with a focus on adjoint methods and their numerical implementation. In addition, the issues of exact controllability and optimal control are discussed for finite- and infinitedimensional quantum systems. Some insight is provided considering ’two-level’ models. This work is completed with an outlook to future developments.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.