Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Let A and B be unital, semisimple commutative Banach algebras with the maximal ideal spaces M A and M B, respectively, and let r(a) be the spectral radius of a. We show that if T: A → B is a surjective mapping, not assumed to be linear, satisfying r(T(a) + T(b)) = r(a + b) for all a; b ∈ A, then there exist a homeomorphism φ: M B → M A and a closed and open subset K of M B such that $$ \widehat{T\left( a \right)}\left( y \right) = \left\{ \begin{gathered} \widehat{T\left( e \right)}\left( y \right)\hat a\left( {\phi \left( y \right)} \right) y \in K \hfill \\ \widehat{T\left( e \right)}\left( y \right)\overline {\hat a\left( {\phi \left( y \right)} \right)} y \in M_\mathcal{B} \backslash K \hfill \\ \end{gathered} \right. $$ for all a ∈ A, where e is unit element of A. If, in addition, $$ \widehat{T\left( e \right)} = 1 $$ and $$ \widehat{T\left( {ie} \right)} = i $$ on M B, then T is an algebra isomorphism.
2
Content available remote

Real-linear isometries between function algebras

100%
Open Mathematics
|
2011
|
tom 9
|
nr 4
778-788
EN
Let A and B be uniformly closed function algebras on locally compact Hausdorff spaces with Choquet boundaries Ch A and ChB, respectively. We prove that if T: A → B is a surjective real-linear isometry, then there exist a continuous function κ: ChB → {z ∈ ℂ: |z| = 1}, a (possibly empty) closed and open subset K of ChB and a homeomorphism φ: ChB → ChA such that T(f) = κ(f ∘φ) on K and $T\left( f \right) = \kappa \overline {fo\phi }$ on ChB \ K for all f ∈ A. Such a representation holds for surjective real-linear isometries between (not necessarily uniformly closed) function algebras.
3
Content available remote

Real linear isometries between function algebras. II

100%
Open Mathematics
|
2013
|
tom 11
|
nr 10
1838-1842
EN
We describe the general form of isometries between uniformly closed function algebras on locally compact Hausdorff spaces in a continuation of the study by Miura. We can actually obtain the form on the Shilov boundary, rather than just on the Choquet boundary. We also give an example showing that the form cannot be extended to the whole maximal ideal space.
4
Content available remote

Multiplicatively and non-symmetric multiplicatively norm-preserving maps

81%
EN
Let A and B be Banach function algebras on compact Hausdorff spaces X and Y and let ‖.‖X and ‖.‖Y denote the supremum norms on X and Y, respectively. We first establish a result concerning a surjective map T between particular subsets of the uniform closures of A and B, preserving multiplicatively the norm, i.e. ‖Tf Tg‖Y = ‖fg‖X, for certain elements f and g in the domain. Then we show that if α ∈ ℂ {0} and T: A → B is a surjective, not necessarily linear, map satisfying ‖fg + α‖X = ‖Tf Tg + α‖Y, f,g ∈ A, then T is injective and there exist a homeomorphism φ: c(B) → c(A) between the Choquet boundaries of B and A, an invertible element η ∈ B with η(Y) ⊆ {1, −1} and a clopen subset K of c(B) such that for each f ∈ A, $$ Tf\left( y \right) = \left\{ \begin{gathered} \eta \left( y \right)f\left( {\phi \left( y \right)} \right) y \in K, \hfill \\ - \frac{\alpha } {{\left| \alpha \right|}}\eta \left( y \right)\overline {f\left( {\phi \left( y \right)} \right)} y \in c\left( B \right)\backslash K \hfill \\ \end{gathered} \right. $$. In particular, if T satisfies the stronger condition R π(fg + α) = R π(Tf Tg + α), where R π(.) denotes the peripheral range of algebra elements, then Tf(y) = T1(y)f(φ(y)), y ∈ c(B), for some homeomorphism φ: c(B) → c(A). At the end of the paper, we consider the case where X and Y are locally compact Hausdorff spaces and show that if A and B are Banach function algebras on X and Y, respectively, then every surjective map T: A → B satisfying ‖Tf Tg‖Y = ‖fg‖, f, g ∈ A, induces a homeomorphism between quotient spaces of particular subsets of X and Y by some equivalence relations.
5
Content available remote

Real-linear isometries between certain subspaces of continuous functions

62%
EN
In this paper we first consider a real-linear isometry T from a certain subspace A of C(X) (endowed with supremum norm) into C(Y) where X and Y are compact Hausdorff spaces and give a result concerning the description of T whenever A is a uniform algebra on X. The result is improved for the case where T(A) is, in addition, a complex subspace of C(Y). We also give a similar description for the case where A is a function space on X and the range of T is a real subspace of C(Y) satisfying a ceratin separating property. Next similar results are obtained for real-linear isometries between spaces of Lipschitz functions on compact metric spaces endowed with a certain complete norm.
6
Content available remote

Maps between Banach function algebras satisfying certain norm conditions

62%
Open Mathematics
|
2013
|
tom 11
|
nr 6
1020-1033
EN
Let A and B be Banach function algebras on compact Hausdorff spaces X and Y, respectively, and let \(\bar A\) and \(\bar B\) be their uniform closures. Let I, I′ be arbitrary non-empty sets, α ∈ ℂ\{0}, ρ: I → A, τ: l′ → a and S: I → B T: l′ → B be maps such that ρ(I, τ(I′) and S(I), T(I′) are closed under multiplications and contain exp A and expB, respectively. We show that if ‖S(p)T(p′)−α‖Y=‖ρ(p)τ(p′) − α‖x for all p ∈ I and p′ ∈ I′, then there exist a real algebra isomorphism S: A → B, a clopen subset K of M B and a homeomorphism ϕ: M B → M A between the maximal ideal spaces of B and A such that for all f ∈ A, [...] where \(\hat \cdot\) denotes the Gelfand transformation. Moreover, S can be extended to a real algebra isomorphism from \(\bar A\) onto \(\bar B\) inducing a homeomorphism between \(M_{\bar B}\) and \(M_{\bar A}\) . We also show that under an additional assumption related to the peripheral range, S is complex linear, that is A and B are algebraically isomorphic. We also consider the case where α = 0 and X and Y are locally compact.
7
Content available remote

Norm conditions for uniform algebra isomorphisms

62%
EN
In recent years much work has been done analyzing maps, not assumed to be linear, between uniform algebras that preserve the norm, spectrum, or subsets of the spectra of algebra elements, and it is shown that such maps must be linear and/or multiplicative. Letting A and B be uniform algebras on compact Hausdorff spaces X and Y, respectively, it is shown here that if λ ∈ ℂ / {0} and T: A → B is a surjective map, not assumed to be linear, satisfying $$ \left\| {T(f)T(g) + \lambda } \right\| = \left\| {fg + \lambda } \right\|\forall f,g \in A, $$ then T is an ℝ-linear isometry and there exist an idempotent e ∈ B, a function κ ∈ B with κ 2 = 1, and an isometric algebra isomorphism $$ \tilde T:{\rm A} \to Be \oplus \bar B(1 - e) $$ such that $$ T(f) = \kappa \left( {\tilde T(f)e + \gamma \overline {\tilde T(f)} (1 - e)} \right) $$ for all f ∈ A, where γ = λ / |λ|. Moreover, if T is unital, i.e. T(1) = 1, then T(i) = i implies that T is an isometric algebra isomorphism whereas T(i) = −i implies that T is a conjugate-isomorphism.
8
Content available remote

Norm conditions for real-algebra isomorphisms between uniform algebras

62%
Open Mathematics
|
2010
|
tom 8
|
nr 1
135-147
EN
Let A and B be uniform algebras. Suppose that α ≠ 0 and A 1 ⊂ A. Let ρ, τ: A 1 → A and S, T: A 1 → B be mappings. Suppose that ρ(A 1), τ(A 1) and S(A 1), T(A 1) are closed under multiplications and contain expA and expB, respectively. If ‖S(f)T(g) − α‖∞ = ‖ρ(f)τ(g) − α‖∞ for all f, g ∈ A 1, S(e 1)−1 ∈ S(A 1) and S(e 1) ∈ T(A 1) for some e 1 ∈ A 1 with ρ(e 1) = 1, then there exists a real-algebra isomorphism $$ \tilde S $$: A → B such that $$ \tilde S $$(ρ(f)) = S(e 1)−1 S(f) for every f ∈ A 1. We also give some applications of this result.
9
Content available remote

Generalized weak peripheral multiplicativity in algebras of Lipschitz functions

62%
EN
Let (X, d X) and (Y,d Y) be pointed compact metric spaces with distinguished base points e X and e Y. The Banach algebra of all $\mathbb{K}$-valued Lipschitz functions on X - where $\mathbb{K}$ is either‒or ℝ - that map the base point e X to 0 is denoted by Lip0(X). The peripheral range of a function f ∈ Lip0(X) is the set Ranµ(f) = {f(x): |f(x)| = ‖f‖∞} of range values of maximum modulus. We prove that if T 1, T 2: Lip0(X) → Lip0(Y) and S 1, S 2: Lip0(X) → Lip0(X) are surjective mappings such that $Ran_\pi (T_1 (f)T_2 (g)) \cap Ran_\pi (S_1 (f)S_2 (g)) \ne \emptyset $ for all f, g ∈ Lip0(X), then there are mappings φ1φ2: Y → $\mathbb{K}$ with φ1(y)φ2(y) = 1 for all y ∈ Y and a base point-preserving Lipschitz homeomorphism ψ: Y → X such that T j(f)(y) = φ j(y)S j(f)(ψ(y)) for all f ∈ Lip0(X), y ∈ Y, and j = 1, 2. In particular, if S 1 and S 2 are identity functions, then T 1 and T 2 are weighted composition operators.
10
Content available remote

A hierarchy in the family of real surjective functions

52%
EN
This expository paper focuses on the study of extreme surjective functions in ℝℝ. We present several different types of extreme surjectivity by providing examples and crucial properties. These examples help us to establish a hierarchy within the different classes of surjectivity we deal with. The classes presented here are: everywhere surjective functions, strongly everywhere surjective functions, κ-everywhere surjective functions, perfectly everywhere surjective functions and Jones functions. The algebraic structure of the sets of surjective functions we show here is studied using the concept of lineability. In the final sections of this work we also reveal unexpected connections between the different degrees of extreme surjectivity given above and other interesting sets of functions such as the space of additive mappings, the class of mappings with a dense graph, the class of Darboux functions and the class of Sierpiński-Zygmund functions in ℝℝ.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.