When a graceful labeling of a bipartite graph places the smaller labels in one of the stable sets of the graph, it becomes an α-labeling. This is the most restrictive type of difference-vertex labeling and it is located at the very core of this research area. Here we use an extension of the adjacency matrix to count and classify α-labeled graphs according to their size, order, and boundary value.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The construction of a homing tour is known to be NP-complete. On the other hand, the Euler formula puts su cient restrictions on plane graphs that one should be able to assert the existence of such tours in some cases; in particular we focus on split Euler tours (SETs) in 3-connected, 4-regular, planar graphs (tfps). An Euler tour S in a graph G is a SET if there is a vertex v (called a half vertex of S) such that the longest portion of the tour between successive visits to v is exactly half the number of edges of G. Among other results, we establish that every tfp G having a SET S in which every vertex of G is a half vertex of S can be transformed to another tfp G′ having a SET S′ in which every vertex of G′ is a half vertex of S′ and G′ has at most one point having a face configuration of a particular class. The various results rely heavily on the structure of such graphs as determined by the Euler formula and on the construction of tfps from the octahedron. We also construct a 2-connected 4-regular planar graph that does not have a SET.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We provide combinatorial as well as probabilistic interpretations for the q-analogue of the Pochhammer k-symbol introduced by Díaz and Teruel. We introduce q-analogues of the Mellin transform in order to study the q-analogue of the k-gamma distribution.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, we calculate the number of spanning trees in the sequence of Dürer graphs with a special feature that it has two alternate states. Using the electrically equivalent transformations, we obtain the weights of corresponding equivalent graphs and further derive relationships for spanning trees between the Dürer graphs and transformed graphs. By algebraic calculations, we obtain a closed-form formula for the number of spanning trees with regard to iteration step. Finally we compare the entropy of our graph with other studied graphs and see that its value of entropy lies in the interval of those of graphs with average degree being 3 and 4.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The purpose of this paper is to study W(2, 2) Lie conformal algebra, which has a free ℂ[∂]-basis {L, M} such that [...] [LλL]=(∂+2λ)L,[LλM]=(∂+2λ)M,[MλM]=0 $\begin{equation}[{L_\lambda }L] = (\partial + 2\lambda )L,[{L_\lambda }M] = (\partial + 2\lambda )M,[{M_\lambda }M] = 0]\end{equation}$ . In this paper, we study conformal derivations, central extensions and conformal modules for this Lie conformal algebra. Also, we compute the cohomology of this Lie conformal algebra with coefficients in its modules. In particular, we determine its cohomology with trivial coefficients both for the basic and reduced complexes.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
As a generalization of the Sierpiński-like graphs, the subdivided-line graph Г(G) of a simple connected graph G is defined to be the line graph of the barycentric subdivision of G. In this paper we obtain a closed-form formula for the enumeration of spanning trees in Г(G), employing the theory of electrical networks. We present bounds for the largest and second smallest Laplacian eigenvalues of Г(G) in terms of the maximum degree, the number of edges, and the first Zagreb index of G. In addition, we establish upper and lower bounds for the Laplacian Estrada index of Г(G) based on the vertex degrees of G. These bounds are also connected with the number of spanning trees in Г(G).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.