It is known that if a rearrangement invariant (r.i.) space E on [0, 1] has an unconditional basis then every linear bounded operator on E is a sum of two narrow operators. On the other hand, for the classical space E = L 1[0, 1] having no unconditional basis the sum of two narrow operators is a narrow operator. We show that a Köthe space on [0, 1] having “lots” of nonnarrow operators that are sum of two narrow operators need not have an unconditional basis. However, we do not know if such an r.i. space exists. Another result establishes sufficient conditions on an r.i. space E under which the orthogonal projection onto the closed linear span of the Rademacher system is a hereditarily narrow operator. This, in particular, answers a question of the first named author and Randrianantoanina (Problem 11.9 in [Popov M., Randrianantoanina B., Narrow Operators on Function Spaces and Vector Lattices, de Gruyter Stud. Math., 45, Walter de Gruyter, Berlin, 2013]).
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
It is known that there is a continuous linear functional on L ∞ which is not narrow. On the other hand, every order-to-norm continuous AM-compact operator from L ∞(μ) to a Banach space is narrow. We study order-to-norm continuous operators acting from L ∞(μ) with a finite atomless measure μ to a Banach space. One of our main results asserts that every order-to-norm continuous operator from L ∞(μ) to c 0(Γ) is narrow while not every such an operator is AM-compact.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Spaces of cone absolutely summing maps are generalizations of Bochner spaces L p(μ, Y), where (Ω, Σ, μ) is some measure space, 1 ≤ p ≤ ∞ and Y is a Banach space. The Hiai-Umegaki space $$ \mathcal{L}^1 \left[ {\sum ,cbf(X)} \right] $$ of integrably bounded functions F: Ω → cbf(X), where the latter denotes the set of all convex bounded closed subsets of a separable Banach space X, is a set-valued analogue of L 1(μ, X). The aim of this work is to introduce set-valued cone absolutely summing maps as a generalization of $$ \mathcal{L}^1 \left[ {\sum ,cbf(X)} \right] $$ , and to derive necessary and sufficient conditions for a set-valued map to be such a set-valued cone absolutely summing map. We also describe these set-valued cone absolutely summing maps as those that map order-Pettis integrable functions to integrably bounded set-valued functions.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let Y be a Banach space, (Ω, Σ; μ) a probability space and φ a finite Young function. It is shown that the Y-valued Orlicz heart H φ(μ, Y) is isometrically isomorphic to the l-completed tensor product $$ H_\varphi \left( \mu \right)\tilde \otimes _l Y $$ of the scalar-valued Orlicz heart Hφ(μ) and Y, in the sense of Chaney and Schaefer. As an application, a characterization is given of the equality of $$ \left( {H_\varphi \left( \mu \right)\tilde \otimes _l Y} \right)* $$ and $$ H_\varphi \left( \mu \right)*\tilde \otimes _l Y* $$ in terms of the Radon-Nikodým property on Y. Convergence of norm-bounded martingales in H φ(μ, Y) is characterized in terms of the Radon-Nikodým property on Y. Using the associativity of the l-norm, an alternative proof is given of the known fact that for any separable Banach lattice E and any Banach space Y, E and Y have the Radon-Nikodým property if and only if $$ E\tilde \otimes _l Y $$ has the Radon-Nikodým property. As a corollary, the Radon-Nikodým property in H φ(μ, Y) is described in terms of the Radon-Nikodým property on H φ(μ) and Y.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.