We establish direct estimates for the q-Baskakov operator introduced by Aral and Gupta in [2], using the second order Ditzian-Totik modulus of smoothness. Furthermore, we define and study the limit q-Baskakov operator.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The pointwise approximation properties of the Bézier variant of the MKZ-Kantorovich operators $$ \hat M_{n,\alpha } (f,x) $$ for α ≥ 1 have been studied in [Comput. Math. Appl., 39 (2000), 1-13]. The aim of this paper is to deal with the pointwise approximation of the operators $$ \hat M_{n,\alpha } (f,x) $$ for the other case 0 < α < 1. By means of some new techniques and new inequalities we establish an estimate formula on the rate of convergence of the operators $$ \hat M_{n,\alpha } (f,x) $$ for the case 0 < α < 1. In the end we propose the q-analogue of MKZK operators.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the present paper we introduce and investigate weighted statistical approximation properties of a q-analogue of the Baskakov and Baskakov-Kantorovich operators. By using a weighted modulus of smoothness, we give some direct estimations for error in the case 0 < q < 1.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.