Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We provide explicit information geometric tubular neighbourhoods containing all bivariate distributions sufficiently close to the cases of independent Poisson or Gaussian processes. This is achieved via affine immersions of the 4-manifold of Freund bivariate distributions and of the 5-manifold of bivariate Gaussians. We provide also the α-geometry for both manifolds. The Central Limit Theorem makes our neighbourhoods of independence limiting cases for a wide range of bivariate distributions; the topological character of the results makes them stable under small perturbations, which is important for applications in models of stochastic processes.
2
Content available remote

Epsilon Nielsen coincidence theory

100%
Open Mathematics
|
2014
|
tom 12
|
nr 9
1337-1348
EN
We construct an epsilon coincidence theory which generalizes, in some aspect, the epsilon fixed point theory proposed by Robert Brown in 2006. Given two maps f, g: X → Y from a well-behaved topological space into a metric space, we define µ ∈(f, g) to be the minimum number of coincidence points of any maps f 1 and g 1 such that f 1 is ∈ 1-homotopic to f, g 1 is ∈ 2-homotopic to g and ∈ 1 + ∈ 2 < ∈. We prove that if Y is a closed Riemannian manifold, then it is possible to attain µ ∈(f, g) moving only one rather than both of the maps. In particular, if X = Y is a closed Riemannian manifold and idY is its identity map, then µ ∈(f, idY) is equal to the ∈-minimum fixed point number of f defined by Brown. If X and Y are orientable closed Riemannian manifolds of the same dimension, we define an ∈-Nielsen coincidence number N ∈(f, g) as a lower bound for µ ∈(f, g). Our constructions and main results lead to an epsilon root theory and we prove a Minimum Theorem in this special approach.
3
Content available remote

Kähler manifolds of quasi-constant holomorphic sectional curvatures

100%
EN
The Kähler manifolds of quasi-constant holomorphic sectional curvatures are introduced as Kähler manifolds with complex distribution of codimension two, whose holomorphic sectional curvature only depends on the corresponding point and the geometric angle, associated with the section. A curvature identity characterizing such manifolds is found. The biconformal group of transformations whose elements transform Kähler metrics into Kähler ones is introduced and biconformal tensor invariants are obtained. This makes it possible to classify the manifolds under consideration locally. The class of locally biconformal flat Kähler metrics is shown to be exactly the class of Kähler metrics whose potential function is only a function of the distance from the origin in ℂn. Finally we show that any rotational even dimensional hypersurface carries locally a natural Kähler structure which is of quasi-constant holomorphic sectional curvatures.
4
Content available remote

Anti-invariant Riemannian submersions from almost Hermitian manifolds

76%
Open Mathematics
|
2010
|
tom 8
|
nr 3
437-447
EN
We introduce anti-invariant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds. We give an example, investigate the geometry of foliations which are arisen from the definition of a Riemannian submersion and check the harmonicity of such submersions. We also find necessary and sufficient conditions for a Langrangian Riemannian submersion, a special anti-invariant Riemannian submersion, to be totally geodesic. Moreover, we obtain decomposition theorems for the total manifold of such submersions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.