CONTENTS 1. Introduction............................................................................................5 2. The local form of concomitants of an almost complex structure.............9 3. Illustrative examples.............................................................................18 4. Connection valued concomitants of an almost complex structure........22 Bibliography.............................................................................................26
[1] S. J. Aldersley, Differentiable concomitants and their role in differential geometry and mathematical physics, Ph. D. Thesis (unpublished), University of Waterloo, 1978.
[2] D. B. A. Epstein, Natural tensors on Riemannian manifolds, J. Differential Geometry 10 (1975), 631-645.
[3] G. W. Horndeski, Tensorial concomitants of relative tensors and linear connections, Utilitas Math. 9 (1976), 3-31.
[4] G. W. Horndeski, Tensorial concomitants of an almost complex structure, in Topics in Differential Geometry, Academic Press, New York 1976, 45-55.
[5] G. W. Horndeski, Examples of almost complex manifolds of non-extremal type, Utilitas Math. 9 (1976), 59-71.
[6] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Wiley Interscience, New York 1969.
[7] A. Nijenhuis, $X_{n-1}$-Forming sets of eigenvectors, Nederl. Akad. Wetensch. Indag. Math. 54 (1951), 200-212
[8] A. Nijenhuis, Geometric aspects of formal differential operations on tensor fields, Proc. Internat. Congress Math. (Edinburgh, 1958) Cambridge University Press, Cambridge, England 1960, 463-469.
[9] W. Ślebodziński, Contribution à la géométrie différentielle d'un tenseur mixte de valence deux, Colloq. Math. 13 (1964), 49-54.
[10] T. Y. Thomas, The differential invariants of generalized spaces, Cambridge University Press, Cambridge, England 1934.
[11] A. G. Walker, Dérivation torsionnelle et seconde torsion pour une structure presque complexe, C. R. Acad. Sci. Paris 245 (1957), 1213-1215.
[12] H. Weyl, The classical groups, Princeton University Press, Princeton, New Jersey 1946.
[13] T. J. Willmore, Note on the Ślebodziński tensor of an almost complex structure, J. London Math. Soc. 43 (1968), 321-322.
[14] K. Yano and M. Ako, An affine connection in an almost quaternion manifold, J. Differential Geometry 8 (1973), 341-347.