EN
CONTENTS
Introduction.......................................................................................................................................................... 5
Chapter I. Some preliminary lemmas............................................................................................................ 8
Chapter II. Weighted $H^p$ spaces of analytic functions.......................................................................... 13
1. Behaviour at the boundary....................................................................................................................... 13
2. Maximal function characterization........................................................................................................... 15
3. Atomic decomposition.............................................................................................................................. 20
4. Dual spaces............................................................................................................................................... 27
Chapter III. $H^p$ spaces associated with the space of homogeneous type (R, w(x)dx).................... 31
1. The space $\mathfrak{H}^1(w(x)dx)$...................................................................................................... 31
2. The spaces $\mathfrak{H}^p(w(x)dx)$ for p < 1.................................................................................... 33
Chapter IV. Applications and examples.......................................................................................................... 40
1. A weighted Hilbert transform.................................................................................................................... 40
2. Equivalence between the space of radial functions in $H^1(R^n)$ and the space
of even functions in $\mathfrak{H}^1(|r|^{n-1}dr)$..................................................................................... 40
3. Integral operators in the line obtained by restricting to radial functions some systems
of Riesz transforms in higher dimensions................................................................................................. 44
4. The kernel $z^{-2}$...................................................................................................................................... 54
References............................................................................................................................................................. 58