EN
			
			
			
CONTENTS 
Comments............................................................................................................................5 
CHAPTER I 
Introduction 
§ 1. Elementary theory of second order differential equations...........................................12 
§ 2. Topological preliminaries.............................................................................................14 
§ 3. The maximum principle................................................................................................16 
§ 4. Existence and a priori bounds-examples.....................................................................19 
§ 5. Problems with other boundary conditions....................................................................25 
CHAPTER II 
The Bernstein theory of the equation y" = f(t, y, y') 
§ 1. The homogeneous Dirichlet, Neumann, and periodic problems...................................28 
§ 2. The homogeneous Sturm-Liouville problem................................................................34 
§ 3. Inhomogeneous boundary conditions..........................................................................35 
§ 4. Examples and remarks................................................................................................39 
§ 5. Bernstein-Nagumo growth conditions..........................................................................44 
§ 6. Nonlinear boundary conditions....................................................................................50 
§ 7. Uniqueness..................................................................................................................52 
CHAPTER III 
Applications 
§ 1. Steady-state temperature distributions........................................................................56 
§ 2. The Thomas-Fermi problem........................................................................................59 
§ 3. Singular boundary value problems..............................................................................62 
§ 4. Osmotic flow.................................................................................................................64 
§ 5. Positive solutions to diffusion equations......................................................................70 
CHAPTER IV 
Other second order boundary value problems 
§ 1. Periodic solutions to differential equations of Nirenberg type......................................76 
§ 2. The Dirichlet problem for y" = f(y') and the Neumann problem for y" = f(t,y,y').............85 
§ 3. Upper and lower solutions...........................................................................................94 
CHAPTER V 
Even order systems and higher order equations 
§ 1. General existence theorems........................................................................................99 
§ 2. Second order systems...............................................................................................102 
§ 3. Third and fourth order problems................................................................................108 
§ 4. Higher even order equations......................................................................................111 
CHAPTER VI 
Numerical solution of boundary value problems 
§ 1. Newton’s method........................................................................................................113 
§ 2. The shooting method for the Dirichlet problem..........................................................115 
§ 3. The shooting method for the Neumann problem........................................................120 
§ 4. Quasilinearization for boundary value problems........................................................121 
References.......................................................................................................................125