CONTENTS Introduction......................................................................................5 I. The category of semi-simplicial manifolds.....................................7 I. 1. Semi-simplicial manifolds and semi-simplicial morphisms..........7 I. 2. Γ-bundles over ss-manifolds...................................................16 I. 3. Morphisms of groupoids..........................................................26 I. 4. The fundamental groupoid of an ss-manifold..........................30 II. Foliations of semi-simplicial manifolds........................................41 II. 1. Foliated ss-manifolds.............................................................41 II. 2. Foliations modelled on a pseudogroup..................................51 II. 3. Holonomy and the transverse structure.................................56 II. 4. A relationship with fundamental groups..................................68 II. 5. Foliated bundles and G-structures.........................................79 References....................................................................................92 Index of symbols............................................................................94 Index..............................................................................................96
Institute of Mathematics, Polish Academy of Sciences, Łódź Branch, Narutowicza 56, 90-136 Łódź, Poland
Bibliografia
[1] G. Andrzejczak, Some characteristic invariants of foliated bundles, Dissertationes Math. 222 (1984).
[2] G. Andrzejczak, On foliations of semi-simplicial manifolds and their holonomy, preprint MPI Bonn/SFB 84-85.
[3] G. Andrzejczak, Supplement to: On foliations of semi-simplicial manifolds and their holonomy; the uniqueness, preprint MPI Bonn/SFB 85-27.
[4] G. Andrzejczak, On foliations of semi-simplicial manifolds and characteristic homomorphisms, preprint MPI Bonn/SFB 85-62.
[5] G. Andrzejczak, On some sheaf cohomology of semi-simplicial manifolds and their realizations, Dissertationes Math. 278 (1989).
[6] R. Bott, Lectures on characteristic classes and foliations, in: Lectures on Algebraic and Differential Topology Delivered at the II. ELAM, Lecture Notes in Math. 279, Springer, Berlin 1972, 1-94.
[7] R. Bott, H. Shulman and J. Stasheff, On the de Rham theory of certain classifying spaces, Adv. in Math. 20 (1976), 43-56.
[8] C. Camacho and A. L. Neto, Teoria geometrica das folheações, I.M.P.A., Rio de Janeiro 1979.
[9] T. E. Duchamp, Characteristic invariants of G-foliations, Thesis, Univ. of Illinois, Urbana-Champaign 1976.
[10] J. L. Dupont, Curvature and Characteristic Classes, Lecture Notes in Math. 640, Springer, Berlin 1978.
[11] C. Ehresmann, Structures feuilletées. in: Proc. of the 5th Canad. Math. Cong., 1961; Oeuvres complètes, II.2, 563-626.
[12] W. T. van Est, Rapport sur les S-atlas, in: Structure Transverse des Feuilletages (Toulouse 1982), Astérisque 116, Soc. Math. de France, 1984, 235-292.
[13] A. Haefliger, Structures feuilletées et cohomologie à valeurs dans un faisceau de groupoï des, Comment. Math. Helv. 32 (1958), 248-329.
[14] A. Haefliger, Homotopy and integrability, in: Manifolds (Amsterdam 1970), Lecture Notes in Math. 197, Springer, Berlin 1972, 133-163.
[15] A. Haefliger, Some remarks on foliations with minimal leaves, J. Differential Geom. 15 (1980), 269-284.
[16] A. Haefliger, Groupoï des d'holonomie et classifiants, in: Structure Transverse des Feuilletages (Toulouse 1982), Astérisque 116, Soc. Math. de France, 1984, 70-97.
[17] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, I, Wiley-Interscience Publ., New York 1963.
[18] H. B. Lawson Jr., The quantitative theory of foliations, CBMS Regional Conf. Ser. in Math. 27, Providence 1977.
[19] P. Molino, Classe d'Atiyah d'un feuilletage et connexions transverses projetables, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A779-A781.
[20] B. L. Reinhart, Differential Geometry of Foliations, Springer, Berlin 1983.
[21] G. Segal, Classifying spaces and spectral sequences, IHES Publ. Math. 34 (1968), 105-112.
[22] I. Tamura, Topology of Foliations, Mir, Moscow 1979 (in Russian; transl. from Japanese).
[23] P. Ver Eecke, Introduction à la théorie des variétés feuilletées, Esquisses Math. 31, Univ. Amiens, 1982.
[24] P. Ver Eecke, Sur le groupe fondamental d'un feuilletage, Cahiers Topologie Géom. Différentielle 25 (4) (1984), 381-428.
[25] P. Ver Eecke, Le groupoï de fondamental d'un feuilletage de Stefan, Publ. Sem. Mat. García de Galdeano, Ser. II, 6, Univ. de Zaragoza, 1986.