[1] S. Banach und S. Mazur, Über mehrdeutige stetige Abbildungen, Studia Math. 5 (1934), pp. 174-178.
[2] F. E. Browder, Covering spaces, fibre spaces, and local homeomorphisms, Duke Math. J. 21 (1954), pp. 329-336.
[3] H. Cart an, Sur les transformations localement topologiques. Acta Litt. Sci. Szeged 6 (1933), pp. 85-104.
[4] C. Chevalley, Theory of Lie groups, Princeton Univ. Press, 1946.
[5] P. T. Church and E. Hemmingsen, Light open maps on n-manifolds, Duke Math. J. 27 (1960), pp. 527-536.
[6] E. Duda and W. Smith, Reflexive open mappings, Pacific J. Math. 38 (1971), pp. 597-611.
[7] S. Eilenberg, Sur quelques propriétés des transformations localement homéomorphes, Fund. Math. 24 (1934), pp. 35-42.
[8] E. E. Floyd, Some characterizations of interior maps, Ann. of Math. 51 (1950), pp. 571-575.
[9] J. Hadamard, Sur les transformations planes, C. R. Acad. Sci. Paris 142 (1906), p. 74.
[10] Chung-Wu-Ho, A note on proper maps, Proc. Amer. Math. Soc. 51 (1975), pp. 237-241.
[11] R. H. Kasriel, Undergraduate topology, W. B. Saunders Co., Philadelphia, Pa., 1971.
[12] A. Lelek and L. F. McAuley, On hereditarily locally connected spaces and one-to-one continuous images of a line, Colloq. Math. 17 (1967), pp. 319-324.
[13] A. Lelek and J. Mycielski, Some conditions for a mapping to be a covering, Fund. Math. 59 (1961), pp. 295-300.
[14] W. S. Massey, Algebraic topology. An introduction, Harcourd, Brace and World, Inc., 1967.
[15] L. F. McAuley, Concerning a conjecture of Whyburn on light open mappings, Bull. Amer. Math. Soc. 71 (1965), pp. 671-674.
[16] L. F. McAuley, Conditions under which light open mappings are homeomorphisms, Duke Math. J. 33 (1966), pp. 445-452.
[17] G. H. Meister and C. Olech, Locally one-to-one mappings and a classical theorem on schlicht functions, Duke Math. J. 30 (1963), pp. 63-68.
[18] Sam B. Nadler, Continua which are a one-to-one continuous image of [0,∞). Fund. Math. 75 (1972), pp. 123-133.
[19] Mitio Nagumo, Sufficient conditions for a locally topological mapping to be univalent, J. Osaka Inst. Sci. Tech. 1 (1949), pp. 33-35.
[20] R. S. Palais, Natural operations on differential forms. Trans. Amer. Math. Soc. 92 (1959), pp. 125-141.
[21] E. E. Spanier, Algebraic topology, McGraw Hill, 1966.
[22] G. S. Ungar, Light fiber maps. Fund. Math. 62 (1968), pp. 31-45.
[23] A. D. Wallace, On 0-regular transformations, Amer. J. Math. 62 (1940), pp. 277-284.
[24] G. T. Whyburn, Open mappings on locally compact spaces, Mem. Amer. Math. Soc. 1 (1950), 24 pp.
[25] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ. 28, Amer. Math. Soc. Providence, R. L. 1942.
[26] G. T. Whyburn, Arc preserving transformations, Amer. J. Math. 58 (1936), p. 305.
[27] G. T. Whyburn, On irreducibility of transformations, Amer. J. Math. 61 (1939), p. 820.
[28] R. F. Williams, Reduction of open maps, Proc. Amer. Math. Soc. 7 (1954), pp. 312-318.
[29] D. Wilson, Open mappings on manifolds and a counter-example to the Whyburn conjecture, Duke Math. J. 40 (1973), pp. 705-716.