CONTENTS Preface (by Ronald Brown)..................................................................5 Introduction..........................................................................................7 Preliminaries........................................................................................9 1. T-complexes and crossed complexes.............................................10 1.1. A groupoid structure for a T-complex..........................................12 1.2. The isomorphism theorem for a T-complex.................................16 1.3. Certain abelian groups associated to a T-complex......................20 1.4. The homomorphism δ..................................................................22 1.5. The groupoid action....................................................................24 1.6. The interchange law between the isomorphisms h and φ............25 1.7. The crossed complex associated to a T-complex........................27 1.8. Some technical results................................................................31 1.9. The isomorphism theorem for T-complexes.................................33 1.10. The T-complex addition lemma..................................................35 1.11. A functor from crossed complexes to T-complexes....................36 1.12. The equivalence of categories..................................................40 2. Special filtered Kan complexes.......................................................41 2.1. Introduction.................................................................................41 2.2. Definitions and examples............................................................42 2.3. The crossed complex associated to the T-complex ϱ(X).............49 3. Simplicial groups............................................................................49 3.1. Group T-complexes.....................................................................50 3.2. Special simplicial groups over a groupoid...................................53 3.3. A filtration of a simplicial group....................................................54 4. Miscellaneous................................................................................54 References........................................................................................58
Department of Pure Mathematics, University College of North Wales, Bangor, Gwynedd L57 2UW, United Kingdom
Bibliografia
M.K. Dakin, 1977, Kan complexes and multiple groupoid structures, Ph. D. thesis, University of Wales.
R. Brown, 1984, Some non-abelian methods in homotopy theory and homological algebra, Categorical Topology: Proc. Conf. Toledo, Ohio, 1983 (ed. H. L. Bentley et al.), Heldermann Verlag. Berlin (1984), 108-146.
R. Brown and P.J. Higgins, 1981, Colimit theorems for relative homotopy groups, J. Pure Appl. Alg. 22, 11-41.
P. Glenn, 1982, Realisation of cohomology classes in arbitrary exact categories, J. Pure Appl. Alg. 25. 33-105.
D.W. Jones, 1988, Poly-T-complexes, University of Wales Ph. D. Thesis (1984), published as A general theory of polyhedral sets and the corresponding T-complexes, Diss. Math. 266.
G.N. Tie, 1987, T-groupoids, W, and a Dold-Kan theorem for crossed complexes, Ph. D. Thesis, State University of New York at Buffalo.
[1] A. L. Blakers, Some relations between homology and homotopy groups, Ann. of Math. 49 (1948), 428-461.
[2] R. Brown, Elements of Modern Topology, McGraw-Hill, New York 1968.
[3] R. Brown, Fibrations of groupoids, J. Algebra 15 (1970), 103-132.
[4] R. Brown and P. J. Higgins, Sur les complexes croisés d'homotopie de quelques espaces filtrées, C.R. Acad. Sci. Paris Sér. A (1978), 91-93.
[5] R. Brown and P. J. Higgins, Sur les complexes croisés, ω-groupoides, T-complexes et ∞-groupoides, C.R. Acad. Sci. Paris Sér. A (1977), 997-999.
[6] R. Brown and P. J. Higgins, On the connection between the second relative homotopy groups of some related spaces, Proc. London Math. Soc. (3) 36 (1978), 193 -212.
[7] R. Brown and C. B. Spencer, Double groupoids and crossed modules, Cahiers Topologie Géom. Différentielle 17 (1976), 343-362.
[8] M. K. Dakin, Kan complexes and multiple groupoid structures, Ph. D. thesis, University of Wales, 1977.
[9] S. T. Hu, Homotopy Theory, Academic Press, New York 1959.
[10] J. P. May, Simplicial Objects in Algebraic Topology, Van Nostrand, Princeton, 1967.
[11] J. H. C. Whitehead, Combinatorial homotopy 11, Bull. Amer. Math. Soc. 55 (1949), 453-496.