EN
CONTENTS
Introduction......................................................................................................................................... 5
Chapter I. THEORY IN CLASSICAL POEM FOB FUNCTIONS
1. Equicontinuity in quasi-uniform context................................................................... 6
2. Quasi-uniform convergence on compacta............................................................. 8
3. k-spaces and $k_3$,-spaces................................................................................... 9
4. A separating equivalence relation............................................................................ 11
5. Ascoli theorem............................................................................................................. 11
Chapter II. TOPOLOGICAL THEORY FOR MULTIFUNCTIONS
6. Preliminary lemmas for multifunctions................................................................... 14
7. Tychonoff theorem for multifunctions....................................................................... 16
8. Exponential law for multifunctions............................................................................ 18
9. Product of two k-spaces............................................................................................. 20
10. Non-Hausdorff theorem of the Gale type.............................................................. 21
11. Non-Hausdorff theorem of the Kelley—Morse type............................................ 24
Chapter III. UNIFORM THEORY FOR MULTIFUNCTIONS
12. Ascoli theorems......................................................................................................... 27
13. Reduction to function context.................................................................................. 32
References.................................................................................................................................................. 36