EN
Let ${τ_n,n≥0}$ be a sequence of measure preserving transformations of a probability space (Ω,Σ,P) into itself and let ${f_n,n≥0}$ be a sequence of elements of $L^2(Ω,Σ,P)$ with $E{f_n}=0$. It is shown that the distribution of
$(∑_{i=0}^{n}f_i∘τ_i∘...∘τ_0)(D(∑_{i=0}^nf_i∘τ_i∘...∘τ_0))^{-1}$
tends to the normal distribution N(0,1) as n → ∞.
CONTENTS
1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. A central limit theorem for martingale differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3. Stationary family of processes and central limit theorems for its elements. . . . . . . . . . . . . . .16
4. Central limit theorems for processes determined by endomorphisms. . . . . . . . . . . . . . . . . . 23
5. The central limit theorems for automorphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
6. Final remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61