Chapter III. Model theory for Heyting-Brouwer logic
1. Ultraproducts.......................................................... 45 2. Model extension theorem............................................. 47 3. Connections between H-B logic and DI logic........... 56 References....................................................................................... 59 List of symbols................................................................................. 60 List of definitions............................................................................. 61
[1] E. W. Beth, Semantic entailment and formal derivability, Meded. d. Koninkl. Nederl. Acad, van Wetensch Afd. Letterk 18 (1955).
[2] K. A. Bowen, Normal Model Theory, Journal of Philosophical Logic, 4 (1975), pp. 97-131.
[3] V. H. Dyson and G. Kreisel, Analysis of Beth's construction of intuitionistic logic, mimeographed 1961.
[4] M. C. Fitting, Intuitionistic Logic, Model Theory and Forcing, North-Holland, Amsterdam-London 1969.
[5] M. C. Fitting, Model Existence Theorem for modal and intuitionistic logic, J. S. L. 38 (1973), pp. 613-627.
[6] D. M. Gabbay, Applications of trees to intermediate logics, J. 3. L. 37 (1973), pp. 135-139.
[7] D. M. Gabbay, Model Theory for Intuitionistic Logic, Zeitschr. f. math. Logic und Grundlagen d. Math. 18 (1972), pp. 49-54.
[8] S. Görnemann, Logic stronger than intuitionism, J. S. L. 36 (1971), pp. 249-261.
[9] A. Grzegorczyk, A philosophically plausible formal interpretation of intuitionistic logic, Indag. Math. 26 (1964), pp. 596-601.
[10] A. Grzegorczyk, Some relational systems and the associated topological spaces. Fund. Math. 60 (1967), pp. 223-231.
[11] D. H. J. de Jongh, Recherches sur les I-valuations, Rapp. Euraton, CETN, 1962.
[12] S. A. Kripke, Semantical analysis of intuitionistic logic I, in: J. N. Crossley and M. A. Dummet (Eds.), Formal systems and recursive functions, North-Holland, Amsterdam 1965.
[13] J. C. C. Mc Kinsey and A. Tarski, On Closed Elements in Closure Algebras, Ann. of Math. 47 (1946), pp. 122-162.
[14] A. Mostowski, Proofs of non-deducibility in intuitionistic functional calculus, J. S. L. 13 (1948), pp. 204-207.
[15] H. Rasiowa and R. Sikorski, The Mathematics of the Metamathematics, PWN, Warsaw 1963.
[16] C. Rauszer, Semi-Boolean algebras and their applications to intuitionistic logic with dual operations, Fund. Math. 83 (1974), pp. 219-249.
[17] C. Rauszer, On the Strong Semantical Completeness of Any Extension of the Intuitionistic Predicate Calculus, Bull. Acad. Polon. Sci. 2 (1976), pp. 81-87.
[18] C. Rauszer and B. Sabalski, Remarks on Distributive Pseudo-Boolean algebras. Bull. Acad. Polon. Sci. 2 (1975), pp. 123-129.
[19] C. Rauszer, Model theory for an extension of intuitionistic logic, Studia Logica 36 (1-2) (1977), pp. 73-87.
[20] J. R. Shoenfield, Mathematical Logic, Addison-Wesley 1967.
[21] R. H. Thomason, On the Strong Semantical Completeness of the Intuitionistic Predicate Calculus, J. S. L. 33 (1968), pp. 1-7.
[22] D. Vakarelov, Representation theorems for semi-Boolean algebras and semantics for Heyting-Brouwer logic, Bull. Acad. Polon. Sci. 11 (1974), pp. 1087-1095.