Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Closed ideals in algebras of smooth functions

Seria

Rozprawy Matematyczne tom/nr w serii: 371 wydano: 1997

Zawartość

Warianty tytułu

Abstrakty

EN
CONTENTS
Introduction........................................................................................5
1. Main definitions and basic examples..............................................7
2. Closed ideals in Sobolev algebras...............................................10
 2.0. Notation...................................................................................10
 2.1. Preliminary observations and results.......................................11
 2.2. Closed primary ideals..............................................................13
 2.3. Spectral synthesis of ideals.....................................................15
3. Spectral synthesis of ideals in the algebras $C^m Lip φ$............18
4. D-algebras...................................................................................21
5. Zygmund algebras.......................................................................26
 5.1. Basic properties.......................................................................26
 5.2. Extensions, approximations, and traces...................................32
 5.3. Closed primary ideals...............................................................40
 5.4. Point derivations......................................................................43
 5.5. An extension property and spectral synthesis..........................46
 5.6. Proof of Theorem 5.1...............................................................48
Appendix..........................................................................................52
 1. Traces of generalized Lipschitz spaces.......................................53
 2. Traces of Zygmund spaces.........................................................58
 3. Proof of Proposition 5.2.11..........................................................62
References.......................................................................................65

Miejsce publikacji

Warszawa

Copyright

Seria

Rozprawy Matematyczne tom/nr w serii: 371

Liczba stron

67

Liczba rozdzia³ów

Opis fizyczny

Dissertationes Mathematicae, Tom CCCLXXI

Daty

wydano
1997
otrzymano
1996-10-09
poprawiono
1997-02-20

Twórcy

  • Department of Mathematics, Idaho State University, Pocatello, Idaho 83209, U.S.A.

Bibliografia

  • [1] R. A. Adams, Sobolev Spaces, Academic Press, 1975.
  • [2] J. J. Benedetto, Spectral Synthesis, Academic Press, New York, 1975.
  • [3] A. Beurling, On the spectral synthesis of bounded functions, Acta Math. 81 (1949), 225-238.
  • [4] A. Beurling, Sur les spectres des fonctions, in: Analyse Harmonique, Colloq. Internat. CNRS 15, Paris, 1949, 9-29.
  • [5] Yu. A. Brudnyĭ, A multidimensional analog of a theorem of Whitney, Math. USSR-Sb. 11 (1970), 157-170.
  • [6] Yu. A. Brudnyĭ and P. A. Shvartsman, A description of the trace of a function from the generalized Lipschitz space on an arbitrary compact set, in: Studies in the Theory of Functions of Several Real Variables, Yaroslavl' State Univ., Yaroslavl', 1982, 16-24 (in Russian).
  • [7] J. Bruna, Spectral synthesis in non-quasi-analytic classes of infinitely differentiable functions, Bull. Sci. Math. (2) 104 (1980), 65-78.
  • [8] V. I. Burenkov, On the approximations of functions in Sobolev spaces by finite functions on an arbitrary open set, Soviet Math. Dokl. 13 (1972), 60-63.
  • [9] E. M. Dyn'kin, An asymptotic Cauchy problem for the Laplace equation, Ark. Mat. 34 (1996), 245-264.
  • [10] E. M. Dyn'kin, An asymptotic Cauchy problem for the Laplace equation. Hölder-Zygmund scale, to appear.
  • [11] E. M. Dyn'kin and L. G. Hanin, Spectral synthesis of ideals in Zygmund algebras: the asymptotic Cauchy problem approach, Michigan Math. J. 43 (1996), 539-557.
  • [12] V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials, Nauka, Moscow, 1977 (in Russian).
  • [13] R. E. Edwards, Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York, 1965.
  • [14] E. Gagliardo, Proprietèa di alcune classi di funzioni in pièu variabili, Ricerche Mat. 7 (1958), 102-137.
  • [15] I. M. Gel'fand, D. A. Raikov and G. E. Shilov, Commutative Normed Rings, Chelsea, Bronx, N.Y., 1964.
  • [16] G. Glaeser, Étude de quelques algèebres tayloriennes, J. Analyse Math. 6 (1958), 1-124.
  • [17] G. Glaeser, Synthèese spectrale des idéaux de fonctions lipschitziennes, C. R. Acad. Sci. Paris 260 (1965), 1539-1542.
  • [18] L. G. Hanin, Spectral synthesis of ideals in algebras of functions having generalized derivatives, Russian Math. Surveys 39 (2) (1984), 167-168.
  • [19] L. G. Hanin, Closed primary ideals and point derivations in Zygmund algebras, in: Constructive Theory of Functions, Proceedings, Publishing House of the Bulgarian Academy of Sciences, Sofia, 1984, 397-402.
  • [20] L. G. Hanin, A theorem on spectral synthesis of ideals for a class of Banach algebras, Soviet Math. Dokl. 35 (1) (1987), 108-112.
  • [21] L. G. Hanin, Description of traces of functions with higher order derivatives satisfying a generalized Zygmund condition on an arbitrary closed set, in: Studies in the Theory of Functions of Several Real Variables, Yaroslavl' State Univ., Yaroslavl', 1988, 128-144 (in Russian).
  • [22] L. G. Hanin, The structure of closed ideals in some algebras of smooth functions, Amer. Math. Soc. Transl. 149 (1991), 97-113.
  • [23] L. I. Hedberg, Spectral synthesis in Sobolev spaces, and uniqueness of solutions of the Dirichlet problem, Acta Math. 147 (1981), 237-264.
  • [24] L. I. Hedberg and T. H. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 (4) (1983), 161-187.
  • [25] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, Springer, Berlin, 1963.
  • [26] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 2, Springer, Berlin, 1970.
  • [27] A. Jonsson and H. Wallin, Function Spaces on Subsets of ℝⁿ, Math. Rep. 2 (1) 1984.
  • [28] J.-P. Kahane, Séries de Fourier absolument convergentes, Springer, Berlin, 1970.
  • [29] E. Lasker, Zur Theorie der Moduln und Ideale, Math. Ann. 60 (1905), 20-116.
  • [30] J. Lindenstrauss, On nonlinear projections in Banach spaces, Michigan Math. J. 11 (1964), 263-287.
  • [31] B. Malgrange, Ideals of Differentiable Functions, Oxford Univ. Press, 1966.
  • [32] P. Malliavin, Sur l'impossibilité de la synthèese spectrale dans une algèebre de fonctions presque périodiques, C. R. Acad. Sci. Paris 248 (1959), 1756-1759.
  • [33] P. Malliavin, Sur l'impossibilité de la synthèese spectrale sur la droite, C. R. Acad. Sci. Paris 248 (1959), 2155-2157.
  • [34] P. Malliavin, Impossibilité de la synthèese spectrale sur les groupes abéliens non compacts, Hautes Études Sci. Publ. Math. 2 (1959), 85-92.
  • [35] A. Marchaud, Sur les dérivées et sur les différences des fonctions de variables réelles, J. Math. Pures Appl. 6 (1927), 337-425.
  • [36] V. G. Maz'ya and T. O. Shaposhnikova, Theory of multipliers in spaces of differentiable functions, Uspekhi Mat. Nauk 38 (3) (1983), 23-86 (in Russian).
  • [37] E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837-842.
  • [38] E. Noether, Idealtheorie in Ringbereichen, Math. Ann. 83 (1921), 24-66.
  • [39] N. M. Osadchiĭ, Algebras L²ₙ(Γ) and the structure of closed ideals in these algebras, Ukrain. Mat. Zh. 26 (5) (1974), 669-670 (in Russian).
  • [40] L. Schwartz, Théorie générale des fonctions moyenne-périodiques, Ann. of Math. 48 (1947), 857-929.
  • [41] L. Schwartz, Sur une propriété de synthèese spectrale dans les groupes non compacts, C. R. Acad. Sci. Paris 227 (1948), 424-426.
  • [42] D. R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240-272.
  • [43] G. E. Shilov, On regular normed rings, Trudy Mat. Inst. Steklov. 21 (1947), 1-118 (in Russian).
  • [44] E. E. Shnol', Closed ideals in the ring of continuously differentiable functions, Mat. Sb. 27 (1950), 281-284 (in Russian).
  • [45] P. A. Shvartsman, On the trace of functions of two variables that satisfy the Zygmund condition, in: Studies in the Theory of Functions of Several Real Variables, Yaroslavl' State Univ., Yaroslavl', 1982, 145-168 (in Russian).
  • [46] P. A. Shvartsman, Traces of functions of Zygmund class, Siberian Math. J. 28 (1987), 848-865.
  • [47] S. L. Sobolev, On a theorem in functional analysis, Mat. Sb. 4 (3) (1938), 471-497 (in Russian).
  • [48] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
  • [49] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375-481.
  • [50] R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060.
  • [51] L. Waelbroeck, Closed ideals of Lipschitz functions, in: Proc. Internat. Sympos. ``Function Algebras", F. Birtel (ed.), Scott-Foresmann, Chicago, 1966, 322-325.
  • [52] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89.
  • [53] H. Whitney, On ideals of differentiable functions, Amer. J. Math. 70 (1948), 635-658.
  • [54] A. Zygmund, Smooth functions, Duke Math. J. 12 (1945), 47-76.

Języki publikacji

EN

Uwagi

1991 Mathematics Subject Classification: Primary 46E25, 46E35, 46H10, 46J10, 46J15, 46J20; Secondary 26A16, 41A10.

Identyfikator YADDA

bwmeta1.element.zamlynska-369d309c-6f8e-43cb-96b4-7ffbcf995e48

Identyfikatory

ISSN
0012-3862

Kolekcja

DML-PL
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.