EN
CONTENTS
Introduction...................................................................................................5
0. Preliminaries................................................................................................7
1. Fundamental properties of harmonic vector functions...............................13
2. Hardy spaces of vector functions...............................................................15
Relations between scalar and vector Hardy classes...................................15
The factorization theorem for $H^p(𝔻,X)$...................................................19
Nontangential limits of functions in $h^p(𝔻,X)$...........................................22
Properties of functions in $h^p(𝕋,X)$..........................................................27
3. Spaces $h^p(𝔻,X)$ and $M_p(𝕋,X)$..........................................................29
4. The sets of translates of harmonic functions..............................................33
5. Translations of functions from Hardy classes..............................................37
6. Translations of functions from Smirnov classes...........................................41
7. Translations of measures from $M_p(G,X)$................................................43
8. A criterion of uncomplementability of $L^p(λ_G,X)$ in $M_p(G,X)$.............53
9. Pettis integrability of the translation function for vector measures...............64
References...................................................................................................77