Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 47 | 2 |

Tytuł artykułu

Pseudo-BCH Semilattices

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this paper we study pseudo-BCH algebras which are semilattices or lattices with respect to the natural relations ≤; we call them pseudo-BCH join-semilattices, pseudo-BCH meet-semilattices and pseudo-BCH lattices, respectively. We prove that the class of all pseudo-BCH join-semilattices is a variety and show that it is weakly regular, arithmetical at 1, and congruence distributive. In addition, we obtain the systems of identities defininig pseudo-BCH meet-semilattices and pseudo-BCH lattices.

Rocznik

Tom

47

Numer

2

Opis fizyczny

Daty

wydano
2018-06-30

Twórcy

  • Faculty of Sciences, Institute of Mathematics and Physics, Siedlce University of Natural Sciences and Humanities, ul. 3 Maja 54, 08-110 Siedlce, Poland

Bibliografia

  • [1] I. Chajda, G. Eigenthaler, H. Länger, Congruence classes in universal algebra, Heldermann Verlag, Lemgo 2003.
  • [2] W. A. Dudek, Y. B. Jun, Pseudo-BCI-algebras, East Asian Mathematical Journal 24 (2008), pp. 187–190.
  • [3] W. A. Dudek, J. Thomys, On decompositions of BCH-algebras, Mathematica Japonica 35 (1990), pp. 1131–1138.
  • [4] G. Georgescu, A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV algebras, [in:] The Proc. of the Fourth International Symp. on Economic Informatics (Bucharest, Romania, May 1999), pp. 961–968.
  • [5] G. Georgescu, A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL algebras, [in:] Abstracts of the Fifth International Conference FSTA 2000 (Slovakia, February 2000), pp. 90–92.
  • [6] G. Georgescu, A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, [in:] Proc. of DMTCS’01: Combinatorics, Computability and Logic (Springer, London, 2001), pp. 97–114.
  • [7] Q. P. Hu, X. Li, On BCH-algebras, Mathematics Seminar Notes 11 (1983), pp. 313–320.
  • [8] Y. Imai, K. Iséki, On axiom systems of propositional calculi XIV, Proceedings of the Japan Academy 42 (1966), pp. 19–22.
  • [9] A. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras – Part I, Journal of Multiple-Valued Logic and Soft Computing 27 (2016), pp. 353–406.
  • [10] A. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras – Part II, Jornal of Multiple-Valued Logic and Soft Computing 27 (2016), pp. 407–456.
  • [11] K. Iséki, An algebra related with a propositional culculus, Proceedings of the Japan Academy 42 (1966), pp. 26–29.
  • [12] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebra, Mathematica Japonica 23 (1978), pp. 1–26.
  • [13] J. Kühr, Pseudo BCK-semilattices, Demonstratio Mathematica 40 (2007), pp. 495–516.
  • [14] A. Walendziak, Pseudo-BCH-algebras, Discussiones Mathematicae – General Algebra and Applications 35 (2015), pp. 1–15.
  • [15] A. Walendziak, On ideals of pseudo-BCH-algebras, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, Mathematica, 70 (2016), pp. 81–91.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.ojs-doi-10_18778_0138-0680_47_2_04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.