Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 46 | 1/2 |

Tytuł artykułu

On Theses Without Iterated Modalities of Modal Logics Between C1 and S5. Part 1

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This is the first, out of two papers, in which we identify all logics between C1 and S5 having the same theses without iterated modalities. All these logics canbe divided into certain groups. Each such group depends only on which of thefollowing formulas are theses of all logics from this group: (N), (T), (D), ⌜(T)∨ ☐q⌝,and for any n > 0 a formula ⌜(T) ∨ (altn)⌝, where (T) has not the atom ‘q’, and(T) and (altn) have no common atom. We generalize Pollack’s result from [12],where he proved that all modal logics between S1 and S5 have the same theseswhich does not involve iterated modalities (i.e., the same first-degree theses).

Rocznik

Tom

46

Numer

1/2

Opis fizyczny

Daty

wydano
2017-06-30

Twórcy

  • Nicolaus Copernicus University in Toruń, Department of Logic, ul. Moniuszki 16, 87–100 Toruń, Poland

Bibliografia

  • [1] B. F. Chellas, Modal Logic. An Introduction, Cambridge University Press: Cambridge, 1980.
  • [2] B. F. Chellas and K. Segerberg, Modal logics in the vicinty of S1, Notre Dame Journal of Formal Logic 37 (1) (1996), pp. 1–24.
  • [3] R. A. Girle, S1 ≠ S0.9 , Notre Dame Journal of Formal Logic 16 (1975), pp. 339–344.
  • [4] G. E. Hughes and M. J. Cresswell, A New Introduction to Modal Logic, Routledge: London and New York, 1996.
  • [5] S. A. Kripke, Semantical analisis of modal logic. II: Non-normal modal propositional calculi, [in:] J. W. Addison, L. Henkin, and A. Tarski (eds.), The Theory of Models. Proc. of the 1963 International Symposium at Berkeley, pp. 206–220, North Holland: Amsterdem, 1965.
  • [6] E. J. Lemmon, New fundations for Lewis modal systems, The Journal of Symbolic Logic 22 (2) (1957), pp. 176–186. DOI: 10.2307/2964179
  • [7] E. J. Lemmon, Algebraic semantics for modal logics I, The Journal of Symbolic Logic 31 (1) (1966), pp. 46–65. DOI: 10.2307/2270619
  • [8] E. J. Lemmon, in collaboration with D. Scott, „Lemmon Notes”: An Introduction to Modal Logic, edited by K. Segerberg, no. 11 in the American Philosophical Quarterly Monograph Series, Basil Blackwell: Oxford, 1977.
  • [9] A. Pietruszczak, Simplified Kripke style semantics for some very weak modal logics, Logic and Logical Philosophy 18 (3–4) (2010), pp. 271–296. DOI: 10.12775/LLP.2009.013
  • [10] A. Pietruszczak, Semantical investigations on some weak modal logics. Part I, Bulletin of the Section of Logic 41 (1/2) (2012), pp. 33–50.
  • [11] A. Pietruszczak, Semantical investigations on some weak modal logics. Part II, Bulletin of the Section of Logic 41 (3/4) (2012), pp. 109–130.
  • [12] J. L. Pollack, Basic Modal Logic, The Journal of Symbolic Logic 32 (3) (1967), pp. 355–365. DOI: 10.2307/2270778
  • [13] G. Priest, An Introduction to Non-Classical Logic, 2th edition, Cambridge University Press, 2008. DOI: 10.1017/CBO9780511801174
  • [14] R. Routley, Decision procedure and semantics for C1, E1 and S0.5◦, Logique et Analyse 44 (1968), pp. 468–471.
  • [15] K. Segerberg, An Essay in Classical Modal Logic, vol. I and vol. II, Uppsala, 1971.
  • [16] G. Takeuti, Proof Theory, North-Holland: Amsterdam, 1975.
  • [17] M. Zakharyaschev, F. Wolter, and A. Chagrov, Advanced modal logic, in D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, 2nd Edition, Volume 3, pp. 83–266. Kluwer Academic Publishers, 2001. DOI: 10.1007/978-94-017-0454-0

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.ojs-doi-10_18778_0138-0680_46_1_2_09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.