In this paper, we define a function \(F : D\times D\times D\to \mathbb{C}\) in terms of \(f\) and show that Re\(F > 0\) for all \(\zeta,z,w \in D\) if and only if \(f\) belongs to the class of convex meromorphic functions.
Duren, P. L., Univalent Functions, Springer-Verlag, Berlin–Heidelberg–New York, 1983.
Miller, J. E., Convex and starlike meromorphic functions, Proc. Amer. Math. Soc. 80 (1980), 607–613.
Gunning, R. C., Introduction to holomorphic functions of several variables, Vol. I, Function Theory, Wadsworth & Brooks/Cole, Pacific Grove – California, 1990.
Hormander, L., An introduction to complex analysis in several variables, Third Edition, North-Holland Publishing Co., Amsterdam, 1990.
Ohno, R., A study on concave functions in geometric function theory, Ph.D. thesis, Tohoku University, 2014.
Ruscheweyh, St., Sheill-Small, T., Hadamard Products of schlicht functions and the Polya–Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119–135.