Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 34 | 4 | 707-721

Tytuł artykułu

Color Energy Of A Unitary Cayley Graph

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Let G be a vertex colored graph. The minimum number χ(G) of colors needed for coloring of a graph G is called the chromatic number. Recently, Adiga et al. [1] have introduced the concept of color energy of a graph Ec(G) and computed the color energy of few families of graphs with χ(G) colors. In this paper we derive explicit formulas for the color energies of the unitary Cayley graph Xn, the complement of the colored unitary Cayley graph (Xn)c and some gcd-graphs.

Wydawca

Rocznik

Tom

34

Numer

4

Strony

707-721

Opis fizyczny

Daty

wydano
2014-11-01
otrzymano
2013-01-31
poprawiono
2013-09-17
zaakceptowano
2013-10-16
online
2014-11-15

Twórcy

  • Department of Studies in Mathematics University of Mysore Manasagangotri Mysore – 570 006, India
  • Department of Studies in Mathematics University of Mysore Manasagangotri Mysore – 570 006, India
autor
  • Department of Studies in Mathematics University of Mysore Manasagangotri Mysore – 570 006, India/The first author is thankful to the university grants commission Goverment of India for the financial support under the grant F.510/2/SAP-DRS/2011. The second and third authors are thankful to DST for its financial support under the project SR/S4/MS 236/04

Bibliografia

  • [1] C. Adiga, E. Sampathkumar, M.A. Sriraj and A.S. Shrikanth, Color energy of a graph, Proc. Jangjeon Math. Soc. 16 3 (2013) 335-351.
  • [2] N. Biggs, Algebraic Graph Theory, Second Edition (Cambridge Mathematical Library, Cambridge University Press, 1993).
  • [3] C. Godsil and G. Royle, Algebraic Graph Theory (Graduate Texts in Mathematics, Springer, 207, 2001).
  • [4] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz 103 (1978) 1-22.
  • [5] G.H. Hardy and E. M. Wright, An Introdution to Theory of Numbers, Fifth Ed. (Oxford University Press New York, 1980).
  • [6] W. Klotz and T. Sander, Some properties of unitary Cayley graphs, Electron. J. Combin. 14 (2007) #R45.
  • [7] A. Ilić, The energy of unitary Cayley graphs, Linear Algebra Appl. 431 (2009) 1881-1889. doi:10.1016/j.laa.2009.06.025
  • [8] M. Mollahajiaghaei, The eigenvalues and energy of integral circulant graphs, Trans. Combin. 1 (2012) 47-56.
  • [9] E. Sampathkumar and M.A. Sriraj, Vertex labeled/colored graphs, matrices and signed graphs, J. Combin. Inform. System Sci., to appear.
  • [10] W. So, Integral circulant graphs, Discrete Math. 306 (2006) 153-158. doi:10.1016/j.disc.2005.11.006

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_7151_dmgt_1767
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.