In this article we define the notion of abstract simplicial complexes and operations on them. We introduce the following basic notions: simplex, face, vertex, degree, skeleton, subdivision and substructure, and prove some of their properties.
Institute of Informatics, University of Białystok, Poland
Bibliografia
[1] Broderick Arneson and Piotr Rudnicki. Recognizing chordal graphs: Lex BFS and MCS. Formalized Mathematics, 14(4):187-205, 2006, doi:10.2478/v10037-006-0022-z.[Crossref]
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563-567, 1990.
[6] Grzegorz Bancerek. Continuous, stable, and linear maps of coherence spaces. Formalized Mathematics, 5(3):381-393, 1996.
[7] Grzegorz Bancerek and Yasunari Shidama. Introduction to matroids. Formalized Mathematics, 16(4):325-332, 2008, doi:10.2478/v10037-008-0040-0.[Crossref]
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.