EN
This paper is a continuation of [12]. First some definitions needed to formulate Cantor's theorem on complete spaces and show several facts about them are introduced. Next section contains the proof of Cantor's theorem and some properties of complete spaces resulting from this theorem. Moreover, countable compact spaces and proofs of auxiliary facts about them is defined. I also show the important condition that every metric space is compact if and only if it is countably compact. Then I prove that every metric space is compact if and only if it is a complete and totally bounded space. I also introduce the definition of the metric space with the well metric. This article is based on [13].MML identifier: COMPL SP, version: 7.8.05 4.89.993