Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 12 | 11 | 1656-1663

Tytuł artykułu

Functions on adjacent vertex degrees of trees with given degree sequence

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this note we consider a discrete symmetric function f(x, y) where $$f(x,a) + f(y,b) \geqslant f(y,a) + f(x,b) for any x \geqslant y and a \geqslant b,$$ associated with the degrees of adjacent vertices in a tree. The extremal trees with respect to the corresponding graph invariant, defined as $$\sum\limits_{uv \in E(T)} {f(deg(u),deg(v))} ,$$ are characterized by the “greedy tree” and “alternating greedy tree”. This is achieved through simple generalizations of previously used ideas on similar questions. As special cases, the already known extremal structures of the Randic index follow as corollaries. The extremal structures for the relatively new sum-connectivity index and harmonic index also follow immediately, some of these extremal structures have not been identified in previous studies.

Słowa kluczowe

EN
Degrees   Function   Index   Trees  

Wydawca

Czasopismo

Rocznik

Tom

12

Numer

11

Strony

1656-1663

Opis fizyczny

Daty

wydano
2014-11-01
online
2014-06-29

Twórcy

autor
  • Georgia Southern University

Bibliografia

  • [1] D. Cvetković, M. Doob, H. Sachs, A. Torgašev, Recent results in the theory of graph spectra, Annals of Discrete Mathematics Series, North-Holland, 1988.
  • [2] D. Cvetkovic, M. Petric, A table of connected graphs on six vertices, Discrete Math. 50 (1984) 37–49. http://dx.doi.org/10.1016/0012-365X(84)90033-5
  • [3] C. Delorme, O. Favaron, D. Rautenbach, On the Randic index, Discrete Math. 257 (2002) 29–38. http://dx.doi.org/10.1016/S0012-365X(02)00256-X
  • [4] S. Fajtlowicz, On conjectures of Graffiti-II, Congr. Numer. 60 (1987) 187–197.
  • [5] O. Favaron, M. Mahéo, J.F. Saclé, Some eigenvalue properties in graphs (conjectures of Graffiti-II), Discrete Math. 111(1993) 197–220. http://dx.doi.org/10.1016/0012-365X(93)90156-N
  • [6] H. Liu, M. Lu, F. Tian, Trees of extremal connectivity index, Discrete Appl. Math. 154(2006) 106–119. http://dx.doi.org/10.1016/j.dam.2004.10.009
  • [7] M. Randic, On characterization of molecular branching, J. Amer. Chem. Soc. 97(1975) 6609–6615. http://dx.doi.org/10.1021/ja00856a001
  • [8] D. Rautenbach, A note on trees of maximum weight and restricted degrees, Discrete Math. 271(2003) 335–342. http://dx.doi.org/10.1016/S0012-365X(03)00135-3
  • [9] N. Schmuck, S. Wagner, H. Wang, Greedy trees, caterpillars, and Wiener-type graph invariants, MATCH Commun. Math.Comput.Chem. 68(2012) 273–292.
  • [10] H. Wang, Extremal trees with given degree sequence for the Randic index, Discrete Math. 308(2008) 3407–3411. http://dx.doi.org/10.1016/j.disc.2007.06.026
  • [11] H. Wang, The extremal values of the Wiener index of a tree with given degree sequence, Discrete Applied Mathematics, 156(2008) 2647–2654. http://dx.doi.org/10.1016/j.dam.2007.11.005
  • [12] H. Wiener, Structural determination of paraffin boiling point, J. Amer. Chem. Soc. 69(1947) 17–20. http://dx.doi.org/10.1021/ja01193a005
  • [13] X.-D. Zhang, Q.-Y. Xiang, L.-Q. Xu, R.-Y. Pan, The Wiener index of trees with given degree sequences, MATCH Commun.Math.Comput.Chem., 60(2008) 623–644.
  • [14] X.-M. Zhang, X.-D. Zhang, D. Gray, H. Wang, The number of subtrees of trees with given degree sequence, J. Graph Theory, 73(2013) 280–295. http://dx.doi.org/10.1002/jgt.21674
  • [15] L. Zhong, The harmonic index for graphs, Applied Math. Letters, 25(2012) 561–566. http://dx.doi.org/10.1016/j.aml.2011.09.059
  • [16] B. Zhou, N. Trinajstic, On a novel connectivity index, J. Math. Chem. 46(2009) 1252–1270. http://dx.doi.org/10.1007/s10910-008-9515-z
  • [17] B. Zhou, N. Trinajstic, On general sum-connectivity index, J. Math. Chem. 47(2010) 210–218. http://dx.doi.org/10.1007/s10910-009-9542-4

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-014-0439-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.