For a class of asymptotically periodic Schrödinger-Poisson systems with critical growth, the existence of ground states is established. The proof is based on the method of Nehari manifold and concentration compactness principle.
[1] Alves Claudianor O., Souto Marco A.S., Soares Sérgio H.M., Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 2011, 377(2), 584–592 http://dx.doi.org/10.1016/j.jmaa.2010.11.031
[2] Ambrosetti A., On Schrödinger-Poisson systems, Milan J. Math., 2008, 76(1), 257–274 http://dx.doi.org/10.1007/s00032-008-0094-z
[3] Ambrosetti A., Ruiz D., Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 2008, 10(3), 391–404 http://dx.doi.org/10.1142/S021919970800282X
[4] Azzollini A., Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity, J. Differential Equations, 2010, 249(7), 1746–1763 http://dx.doi.org/10.1016/j.jde.2010.07.007
[5] Azzollini A., Pomponio A., Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 2008, 345(1), 90–108 http://dx.doi.org/10.1016/j.jmaa.2008.03.057
[6] Benci V., Fortunato D., An eigenvalue problem for the Schrödinger-Maxwell equations, Top. Meth. Nonlinear Anal., 1998, 11(2), 283–293
[7] Cerami G., Vaira G., Positive solutions for some nonautonomous Schrödinger-Poisson systems, J. Differential Equations, 2010, 248(3), 521–543 http://dx.doi.org/10.1016/j.jde.2009.06.017
[8] Coclite G.M., A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 2003, 7(2–3), 417–423
[9] D’Aprile T., Mugnai D., Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect., 2004, 134(5), 893–906 http://dx.doi.org/10.1017/S030821050000353X
[10] D’Aprile T., Mugnai D., Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 2004, 4(3), 307–322
[11] D’Avenia P., Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2002, 2(2), 177–192
[12] D’Avenia P., Pomponio A., Vaira G., Infinitely many positive solutions for a Schrödinger-Poisson system, Appl. Math. Lett., 2011, 24(5), 661–664 http://dx.doi.org/10.1016/j.aml.2010.12.002
[13] He X.M., Multiplicity and concentration of positive solutions for the Schrödinger-Poisson equations, Z. Angew. Math. Phys., 2011, 62(5), 869–889 http://dx.doi.org/10.1007/s00033-011-0120-9
[14] He X.M., Zou Z.W., Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 2012, 53(2), #023702
[15] Ianni I., Solutions of the Schrödinger-Poisson problem concentrating on spheres. II. Existence, Math. Models Methods Appl. Sci., 2009, 19(6), 877–910 http://dx.doi.org/10.1142/S0218202509003656
[16] Ianni I., Vaira G., Solutions of the Schrödinger-Poisson problem concentrating on spheres. I. Necessary conditions, Math. Models Methods Appl. Sci., 2009, 19(5), 707–720 http://dx.doi.org/10.1142/S0218202509003589
[17] Jiang Y.S., Zhou H.S., Schrödinger-Poisson system with steep potential well, J. Differential Equations, 2011, 251(3), 582–608 http://dx.doi.org/10.1016/j.jde.2011.05.006
[18] Kikuchi H., On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations, Nonlinear Anal., 2007, 67(5), 1445–1456 http://dx.doi.org/10.1016/j.na.2006.07.029
[19] Li G.B., Peng S., Wang C.H., Multi-bump solutions for the nonlinear Schrödinger-Poisson system, J. Math. Phys., 2011, 52(5), #053505
[20] Li G.B., Peng S., Yan S., Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 2010, 12(6), 1069–1092 http://dx.doi.org/10.1142/S0219199710004068
[22] Mawhin J., Willem M., Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer-Verlag, New York, 1989
[23] Ruiz D., The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237(2), 655–674 http://dx.doi.org/10.1016/j.jfa.2006.04.005
[25] Sun J.T., Chen H.B., Nieto J., On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 2012, 252(5), 3365–3380 http://dx.doi.org/10.1016/j.jde.2011.12.007
[26] Sun J.T., Chen H.B., Yang L., Positive solutions of asymptotically linear Schrödinger-Poisson systems with a radial potential vanishing at infinity, Nonlinear Anal., 2011, 74(2), 413–423 http://dx.doi.org/10.1016/j.na.2010.08.052
[27] Szulkin A., Weth T., The Method of Nehari Manifold, Gao D.Y. and Motreanu D. (Eds.), Handbook of Nonconvex Analysis and Applications, International Press, Boston, 2010, 597–632
[28] Vaira G., Ground states for Schrödinger-Poisson type systems, Ricerche mat., 2011, 60(2), 263–297 http://dx.doi.org/10.1007/s11587-011-0109-x
[29] Wang J., Tian L.X., Xu J.X., Zhang F.B., Existence and concentration of positive ground state solutions for Schrödinger-Poisson systems, Adv. Nonlinear Stud., 2013, 13(3), 553–582
[30] Wang Z.P., Zhou H.S., Positive solution for a nonlinear stationary Schrödinger-Poisson system in ℝ3, Discrete Contin. Dyn. Syst., 2007, 18(4), 809–816 http://dx.doi.org/10.3934/dcds.2007.18.809
[31] Willem M., Minimax Theorems, Progr. Nonlinear Differential Equations Appl., 24, Birkhäuser, Basel, 1996
[32] Yang M.H., Han Z.Q., Existence and multiplicity results for the nonlinear Schrödinger-Poisson systems, Nonlinear Anal. Real World Appl., 2012, 13(3), 1093–1101 http://dx.doi.org/10.1016/j.nonrwa.2011.07.008