Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 12 | 7 | 952-975

Tytuł artykułu

Lagrangian 4-planes in holomorphic symplectic varieties of K3[4]-type

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We classify the cohomology classes of Lagrangian 4-planes ℙ4 in a smooth manifold X deformation equivalent to a Hilbert scheme of four points on a K3 surface, up to the monodromy action. Classically, the Mori cone of effective curves on a K3 surface S is generated by nonnegative classes C, for which (C, C) ≥ 0, and nodal classes C, for which (C, C) = −2; Hassett and Tschinkel conjecture that the Mori cone of a holomorphic symplectic variety X is similarly controlled by “nodal” classes C such that (C, C) = −γ, for (·,·) now the Beauville-Bogomolov form, where γ classifies the geometry of the extremal contraction associated to C. In particular, they conjecture that for X deformation equivalent to a Hilbert scheme of n points on a K3 surface, the class C = ℓ of a line in a smooth Lagrangian n-plane ℙn must satisfy (ℓ,ℓ) = −(n + 3)/2. We prove the conjecture for n = 4 by computing the ring of monodromy invariants on X, and showing there is a unique monodromy orbit of Lagrangian 4-planes.

Wydawca

Czasopismo

Rocznik

Tom

12

Numer

7

Strony

952-975

Opis fizyczny

Daty

wydano
2014-07-01
online
2014-04-03

Twórcy

  • New York University
autor
  • University of Notre Dame

Bibliografia

  • [1] Bayer A., Hassett B., Tschinkel Yu., Mori cones of holomorphic symplectic varieties of K3 type, preprint available at http://arxiv.org/abs/1307.2291
  • [2] Bayer A., Macrì E., Projective and birational geometry of Bridgeland moduli spaces, preprint avaliable at http://arxiv.org/abs/1203.4613
  • [3] Bayer A., Macrì E., MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, preprint available at http://arxiv.org/abs/1301.6968
  • [4] Beauville A., Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom., 1983, 18(4), 755–782
  • [5] Bosma W., Cannon J., Playoust C., The Magma algebra system. I. The user language, In: Computational Algebra and Number Theory, London, August 23–27, 1993, J. Symbolic Comput., 1997, 24(3–4), 235–265
  • [6] Cohen H., A Course in Computational Algebraic Number Theory, Grad. Texts in Math., 138, Springer, Berlin, 1993
  • [7] Ellingsrud G., Göttsche L., Lehn M., On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom., 2001, 10(1), 81–100
  • [8] Ellingsrud G., Strømme S.A., On the homology of the Hilbert scheme of points in the plane, Invent. Math., 1987, 87(2), 343–352 http://dx.doi.org/10.1007/BF01389419
  • [9] Fujiki A., On the de Rham cohomology group of a compact Kähler symplectic manifold, In: Algebraic Geometry, Sendai, June 24–29, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 105–165
  • [10] Fulton W., Harris J., Representation Theory, Grad. Texts in Math., 129, Springer, New York, 1991
  • [11] Grigorov G., Jorza A., Patrikis S., Stein W.A., Tarniţă C., Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves, Math. Comp., 2009, 78(268), 2397–2425 http://dx.doi.org/10.1090/S0025-5718-09-02253-4
  • [12] Harvey D., Hassett B., Tschinkel Yu., Characterizing projective spaces on deformations of Hilbert schemes of K3 surfaces, preprint available at http://arxiv.org/abs/1011.1285
  • [13] Hassett B., Tschinkel Yu., Moving and ample cones of holomorphic symplectic fourfolds, Geom. Funct. Anal., 2009, 19(4), 1065–1080 http://dx.doi.org/10.1007/s00039-009-0022-6
  • [14] Hassett B., Tschinkel Yu., Intersection numbers of extremal rays on holomorphic symplectic varieties, Asian J. Math., 2010, 14(3), 303–322 http://dx.doi.org/10.4310/AJM.2010.v14.n3.a2
  • [15] Hassett B., Tschinkel Yu., Hodge theory and Lagrangian planes on generalized Kummer fourfolds, preprint availabe at http://arxiv.org/abs/1004.0046
  • [16] Lehn M., Sorger C., The cup product of Hilbert schemes for K3 surfaces, Invent. Math., 2003, 152(2), 305–329 http://dx.doi.org/10.1007/s00222-002-0270-7
  • [17] Looijenga E., Peters C., Torelli theorems for Kähler K3 surfaces, Compositio Math., 1980/81, 42(2), 145–186
  • [18] Markman E., On the monodromy of moduli spaces of sheaves on K3 surfaces, J. Algebr. Geom., 2008, 17(1), 29–99 http://dx.doi.org/10.1090/S1056-3911-07-00457-2
  • [19] Markman E., The Beauville-Bogomolov class as a characteristic class, preprint availabe at http://arxiv.org/abs/1105.3223
  • [20] Markman E., Private communication
  • [21] Mongardi G., A note on the Kähler and Mori cones of manifolds of K3[n] type, preprint available at http://arxiv.org/abs/1307.0393
  • [22] Ran Z., Hodge theory and deformations of maps, Compositio Math., 1995, 97(3), 309–328
  • [23] Stein W.A. et al., Sage Mathematics Software, Version 5.2, The Sage Development Team, 2013, available at http://www.sagemath.org
  • [24] Voisin C., Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes, In: Complex Projective Geometry, Trieste, June 19–24, Bergen, July 3–6, 1989, London Math. Soc. Lecture Note Ser., 179, Cambridge University Press, Cambridge, 1992, 294–303
  • [25] The PARI Group, Bordeaux, PARI/GP, Version 2.5.4, 2012, available at http://pari.math.u-bordeaux.fr

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-013-0389-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.