Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 10 | 5 | 1655-1672

Tytuł artykułu

Generalised elliptic functions

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We consider multiply periodic functions, sometimes called Abelian functions, defined with respect to the period matrices associated with classes of algebraic curves. We realise them as generalisations of the Weierstraß ℘-function using two different approaches. These functions arise naturally as solutions to some of the important equations of mathematical physics and their differential equations, addition formulae, and applications have all been recent topics of study. The first approach discussed sees the functions defined as logarithmic derivatives of the σ-function, a modified Riemann θ-function. We can make use of known properties of the σ-function to derive power series expansions and in turn the properties mentioned above. This approach has been extended to a wide range of non hyperelliptic and higher genus curves and an overview of recent results is given. The second approach defines the functions algebraically, after first modifying the curve into its equivariant form. This approach allows the use of representation theory to derive a range of results at lower computational cost. We discuss the development of this theory for hyperelliptic curves and how it may be extended in the future. We consider how the two approaches may be combined, giving the explicit mappings for the genus 3 hyperelliptic theory. We consider the problem of generating bases of the functions and how these decompose when viewed in the equivariant form.

Wydawca

Czasopismo

Rocznik

Tom

10

Numer

5

Strony

1655-1672

Opis fizyczny

Daty

wydano
2012-10-01
online
2012-07-24

Twórcy

Bibliografia

  • [1] Athorne C., Identities for hyperelliptic ℘-functions of genus one, two and three in covariant form, J. Phys. A, 2008, 41(41), #415202 http://dx.doi.org/10.1088/1751-8113/41/41/415202
  • [2] Athorne C., A generalization of Baker’s quadratic formulae for hyperelliptic ℘-functions, Phys. Lett. A, 2011, 375(28–29), 2689–2693 http://dx.doi.org/10.1016/j.physleta.2011.05.056
  • [3] Athorne C., On the equivariant algebraic Jacobian for curves of genus two, J. Geom. Phys., 2012, 62(4), 724–730 http://dx.doi.org/10.1016/j.geomphys.2011.12.016
  • [4] Athorne C., Eilbeck J.C., Enolskii V.Z., Identities for the classical genus two ℘-function, J. Geom. Phys., 2003, 48(2–3), 354–368 http://dx.doi.org/10.1016/S0393-0440(03)00048-2
  • [5] Baker H.F., Abelian Functions, Cambridge University Press, Cambridge, 1897
  • [6] Baker H.F., On a system of differential equations leading to periodic functions, Acta Math., 1903, 27, 135–156 http://dx.doi.org/10.1007/BF02421301
  • [7] Baker H.F., An Introduction to the Theory of Multiply-Periodic Functions, Cambridge University Press, Cambridge, 1907
  • [8] Baldwin S., Eilbeck J.C., Gibbons J., Ônishi Y., Abelian functions for cyclic trigonal curves of genus 4, J. Geom. Phys., 2008, 58(4), 450–467 http://dx.doi.org/10.1016/j.geomphys.2007.12.001
  • [9] Baldwin S., Gibbons J., Genus 4 trigonal reduction of the Benney equations, J. Phys. A, 2006, 39(14), 3607–3639 http://dx.doi.org/10.1088/0305-4470/39/14/008
  • [10] Buchstaber V.M., Enolskii V.Z., Leykin D.V., Kleinian functions, hyperelliptic Jacobians and applications, Rev. Math. Math. Phys., 1997, 10(2), 3–120
  • [11] Buchstaber V.M., Enolskii V.Z., Leykin D.V., Rational analogs of Abelian functions, Funct. Anal. Appl., 1999, 33(2), 83–94 http://dx.doi.org/10.1007/BF02465189
  • [12] Buchstaber V.M., Enolskii V.Z., Leykin D.V., Uniformization of Jacobi varieties of trigonal curves and nonlinear equations, Funct. Anal. Appl., 2000, 34(3), 159–171 http://dx.doi.org/10.1007/BF02482405
  • [13] Cassels J.W.S., Flynn E.V., Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2, London Math. Soc. Lecture Note Ser., 230, Cambridge University Press, Cambridge, 1996 http://dx.doi.org/10.1017/CBO9780511526084
  • [14] Cho K., Nakayashiki A., Differential structure of Abelian functions, Internat. J. Math., 2008, 19(2), 145–171 http://dx.doi.org/10.1142/S0129167X08004595
  • [15] Dodd R.K., Eilbeck J.C., Gibbon J.D., Morris H.C., Solitons and Nonlinear Wave Equations, Academic Press, London-New York, 1982
  • [16] Eilbeck J.C., England M., Ônishi Y., Abelian functions associated with genus three algebraic curves, LMS J. Comput. Math., 2011, 14, 291–326
  • [17] Eilbeck J.C., Enolskii V.Z., Leykin D.V., On the Kleinian construction of Abelian functions of canonical algebraic curves, In: Symmetries and Integrability of Difference Equations, Sabaudia, May 16–22, 1998, CRM Proc. Lecture Notes, 25, American Mathematical Society, Providence, 2000, 121–138
  • [18] Eilbeck J.C., Enolski V.Z., Matsutani S., Ônishi Y., Previato E., Abelian functions for trigonal curves of genus three, Int. Math. Res. Not. IMRN, 2007, #140
  • [19] England M., Higher genus Abelian functions associated with cyclic trigonal curves, SIGMA Symmetry Integrability Geom. Methods Appl., 2010, 6, #025
  • [20] England M., Deriving bases for Abelian functions, Comput. Methods Funct. Theory, 2011, 11(2), 617–654
  • [21] England M., Athorne C., Building Abelian functions with generalised Hirota operators, preprint available at http://arxiv.org/abs/1203.3409
  • [22] England M., Eilbeck J.C., Abelian functions associated with a cyclic tetragonal curve of genus six, J. Phys. A, 2009, 42(9), #095210 http://dx.doi.org/10.1088/1751-8113/42/9/095210
  • [23] England M., Gibbons J., A genus six cyclic tetragonal reduction of the Benney equations, J. Phys. A, 2009, 42(37), #375202 http://dx.doi.org/10.1088/1751-8113/42/37/375202
  • [24] Enolskii V.Z., Hackmann E., Kagramanova V., Kunz J., Lämmerzahl C., Inversion of hyperelliptic integrals of arbitrary genus with application to particle motion in general relativity, J. Geom. Phys., 2011, 61(5), 899–921 http://dx.doi.org/10.1016/j.geomphys.2011.01.001
  • [25] Enolskii V.Z., Pronine M., Richter P.H., Double pendulum and θ-divisor, J. Nonlinear Sci., 2003, 13(2), 157–174 http://dx.doi.org/10.1007/s00332-002-0514-0
  • [26] Farkas H.M., Kra I., Riemann Surfaces, 2nd ed., Grad. Texts in Math., 71, Springer, New York, 1992 http://dx.doi.org/10.1007/978-1-4612-2034-3
  • [27] Korotkin D., Shramchenko V., On higher genus Weierstrass sigma-function, Phys. D (in press), DOI: 10.1016/j.physd.2012.01.002
  • [28] Lang S., Introduction to Algebraic and Abelian Functions, 2nd ed., Grad. Texts in Math., 89, Springer, NewYork-Berlin, 1982 http://dx.doi.org/10.1007/978-1-4612-5740-0
  • [29] McKean H., Moll V., Elliptic Curves, Cambridge University Press, Cambridge, 1997
  • [30] Nakayashiki A., On algebraic expressions of sigma functions for (n; s)-curves, Asian J. Math., 2010, 14(2), 175–211
  • [31] Washington L.C., Elliptic Curves, 2nd ed., Discrete Math. Appl. (Boca Raton), Chapman & Hall/CRC, Boca Raton, 2008

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-012-0083-x
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.