Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2011 | 9 | 5 | 1185-1191

Tytuł artykułu

Algebraic axiomatization of tense intuitionistic logic

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We introduce two unary operators G and H on a relatively pseudocomplemented lattice which form an algebraic axiomatization of the tense quantifiers “it is always going to be the case that” and “it has always been the case that”. Their axiomatization is an extended version for the classical logic and it is in accordance with these operators on many-valued Łukasiewicz logic. Finally, we get a general construction of these tense operators on complete relatively pseudocomplemented lattice which is a power lattice via the so-called frame.

Wydawca

Czasopismo

Rocznik

Tom

9

Numer

5

Strony

1185-1191

Opis fizyczny

Daty

wydano
2011-10-01
online
2011-07-26

Twórcy

autor
  • Palacký University Olomouc

Bibliografia

  • [1] Birkhoff G., Lattice Theory, Amer. Math. Soc. Colloq. Publ., 3rd ed., 25, American Mathematical Society, Providence, 1967
  • [2] Botur M., Chajda I., Halaš R., Kolařík M., Tense operators on basic algebras, Internat. J. Theoret. Phys. (in press), DOI: 10.1007/s10773-011-0748-4
  • [3] Brouwer L.E.J., Intuitionism and formalism, Bull. Amer. Math. Soc., 1913, 20(2), 81–96 http://dx.doi.org/10.1090/S0002-9904-1913-02440-6
  • [4] Burgess J.P., Basic tense logic, In: Handbook of Philosophical Logic II, Synthese Lib., 165, Reidel, Dordrecht, 1984, 89–133
  • [5] Chajda I., Halaš R., Kühr J., Semilattice Structures, Res. Exp. Math., 30, Heldermann, Lemgo, 2007
  • [6] Chajda I., Kolařík M., Dynamic effect algebras, Math. Slovaca (in press)
  • [7] Chiriţă C., Tense ϑ-valued Moisil propositional logic, International Journal of Computers, Communications & Control, 2010, 5(5), 642–653
  • [8] Chiriţă C., Tense ϑ-valued Łukasiewicz-Moisil algebras, J. Mult.-Valued Logic Soft Comput., 2011, 17(1), 1–24
  • [9] Diaconescu D., Georgescu G., Tense operators on MV-algebras and Łukasiewicz-Moisil algebras, Fund. Inform., 2007, 81(4), 379–408
  • [10] Ewald W.B., Intuitionistic tense and modal logic, J. Symbolic Logic, 1986, 51(1), 166–179 http://dx.doi.org/10.2307/2273953
  • [11] Heyting A., Intuitionism. An Introduction, North-Holland, Amsterdam, 1956
  • [12] Rasiowa H., Sikorski R., The Mathematics of Metamathematics, Monogr. Mat., 41, PWN, Warszawa, 1963
  • [13] Turunen E., Mathematics Behind Fuzzy Logic, Adv. Soft Comput., Physica-Verlag, Heidelberg, 1999
  • [14] Wijesekera D., Constructive modal logics. I, Ann. Pure Appl. Logic, 1990, 50(3), 271–301 http://dx.doi.org/10.1016/0168-0072(90)90059-B

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-011-0063-6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.