[1] Ahlfors L.V., Complex Analysis, Internat. Ser. Pure Appl. Math., 3rd ed., McGraw-Hill, New York, 1979
[2] Brown R., A brief account of microscopical observations made in the months of June, July, and August, 1827, on the particles contained in the pollen of plants, etc., Philosophical Magazine, 1828, 4, 161–173
[3] Cameron R.H., Martin W.T., The Wiener measure of Hilbert neighborhoods in the space of real continuous functions, Journal of Mathematics and Physics Mass. Inst. Tech., 1944, 23, 195–209
[5] Courant R., Differential and Integral Calculus, vol. 2, Wiley Classics Lib., John Wiley & Sons, New York, 1988
[6] Courant R., Hilbert D., Methoden der Mathematischen Physik, Springer, Berlin, 1931
[7] Dyson F.J., Statistical theory of the energy levels of complex systems. I, J. Mathematical Phys., 1962, 3, 140–156 http://dx.doi.org/10.1063/1.1703773
[9] Einstein A., Über die von der molekularkinetischen Theorie der Wärme gefordete Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys., 1905, 17, 549–560; reprinted in: Investigations on the Theory of the Brownian Movement, Dover, New York, 1956 http://dx.doi.org/10.1002/andp.19053220806
[10] Fredholm I., Sur une classe d’équations fonctionelles, Acta Math., 1903, 27(1), 365–390 http://dx.doi.org/10.1007/BF02421317
[12] Jimbo M., Miwa T., Môri Y., Sato M., Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Phys. D, 1980, 1(1), 80–158 http://dx.doi.org/10.1016/0167-2789(80)90006-8
[13] Kato T., A Short Introduction to Perturbation Theory for Linear Operators, Springer, New York-Berlin, 1982
[14] Lamb G.L., Jr., Elements of Soliton Theory, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York, 1980
[15] Lax P.D., Linear Algebra, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York, 1997
[16] Lax P.D., Functional Analysis, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York, 2002
[17] Lévy P., Le Mouvement Brownien, Mémoir. Sci. Math., 126, Gauthier-Villars, Paris, 1954