Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2010 | 8 | 2 | 367-377

Tytuł artykułu

Multivalued fractals in b-metric spaces

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Fractals and multivalued fractals play an important role in biology, quantum mechanics, computer graphics, dynamical systems, astronomy and astrophysics, geophysics, etc. Especially, there are important consequences of the iterated function (or multifunction) systems theory in several topics of applied sciences. It is known that examples of fractals and multivalued fractals are coming from fixed point theory for single-valued and multivalued operators, via the so-called fractal and multi-fractal operators. On the other hand, the most common setting for the study of fractals and multi-fractals is the case of operators on complete or compact metric spaces. The purpose of this paper is to extend the study of fractal operator theory for multivalued operators on complete b-metric spaces.

Wydawca

Czasopismo

Rocznik

Tom

8

Numer

2

Strony

367-377

Opis fizyczny

Daty

wydano
2010-04-01
online
2010-04-14

Twórcy

  • Babeş-Bolyai University
autor
  • Babeş-Bolyai University
  • Babeş-Bolyai University

Bibliografia

  • [1] Andres J., Fišer J., Metric and topological multivalued fractals, Int. J. Bifurc. Chaos Appl. Sci. Engn., 2004, 14, 1277–1289 http://dx.doi.org/10.1142/S021812740400979X
  • [2] Andres J., Fišer J., Gabor G., Leśniak K., Multivalued fractals, Chaos Solitons & Fractals, 2005, 24, 665–700 http://dx.doi.org/10.1016/j.chaos.2004.09.029
  • [3] Bakhtin I.A., The contraction mapping principle in almost metric spaces, Funct. Anal, Gos. Ped. Inst. Unianowsk, 1989, 30, 26–37
  • [4] Barnsley M.F, Fractals Everywhere, Academic Press, Boston, 1988
  • [5] Berinde V, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 1993, 3–9
  • [6] Berinde V, Sequences of operators and fixed points in quasimetric spaces, Studia Univ. Babeş-Bolyai, Math., 1996, 16,23–27
  • [7] Blumenthal L.M., Theory and Applications of Distance Geometry, Oxford Univ. Press, Oxford, 1953
  • [8] Boriceanu M., Petruşel A., Rus I.A., Fixed point theorems for some multivalued generalized contractions in b-metric spaces, Internat. J. Math. Statistics, 2010, 6, 65–76
  • [9] Bourbaki N., Topologie générale, Herman, Paris, 1974
  • [10] Browder FE., On the convergence of successive approximations for nonlinear functional equations, Indag. Math., 1968,30,27–35
  • [11] Chifu C, Petruşel A., Multivalued fractals and generalized multivalued contractions, Chaos Solitons & Fractals, 2008,36,203–210 http://dx.doi.org/10.1016/j.chaos.2006.06.027
  • [12] Covitz H., Nadler S.B. jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 1970, 8, 5–11 http://dx.doi.org/10.1007/BF02771543
  • [13] Czerwik S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 1998, 46, 263–276
  • [14] El Naschie M.S., Iterated function systems and the two-slit experiment of quantum mechanics, Chaos Solitons & Fractals, 1994, 4, 1965–1968 http://dx.doi.org/10.1016/0960-0779(94)90011-6
  • [15] Fréchet M., Les espaces abstraits, Gauthier-Villars, Paris, 1928
  • [16] Heinonen J., Lectures on Analysis on Metric Spaces, Springer Berlin, 2001
  • [17] Hu S., Papageorgiou N.S., Handbook of Multivalued Analysis, Vol. I, II, Kluwer Acad. Publ., Dordrecht, 1997, 1999
  • [18] Hutchinson J.E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30, 713–747 http://dx.doi.org/10.1512/iumj.1981.30.30055
  • [19] Jachymski J., Matkowski J., Światkowski T., Nonlinear contractions on semimetric spaces, J. Appl. Anal., 1995, 1, 125–134 http://dx.doi.org/10.1515/JAA.1995.125
  • [20] Kirk W.A., Sims B. (Eds.), Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001
  • [21] Llorens-Fuster E., Petruşel A., Yao J.C., Iterated function systems and well-posedness, Chaos Solitons & Fractals, 2009, 41, 1561–1568 http://dx.doi.org/10.1016/j.chaos.2008.06.019
  • [22] Meir A., Keeler E., A theorem on contraction mappings, J. Math. Anal. Appl., 1969, 28, 326–329 http://dx.doi.org/10.1016/0022-247X(69)90031-6
  • [23] Nadler S.B. Jr., Multivalued contraction mappings, Pacific J. Math., 1969, 30, 475–488
  • [24] Păcurar (Berinde) M., Iterative methods for fixed point approximation, Ph.D. thesis, Babeş-Bolyai University Cluj-Napoca, Romania, 2009
  • [25] Păcurar (Berinde) M., A fixed point result for ϕ-contractions on b-metric spaces without the boundedness assumption, preprint
  • [26] Petruşel A., Rus I.A., Well-posedness of the fixed point problem for multivalued operators, Applied Analysis and Differential Equations (Cârjă O., Vrabie I.I. (Eds.) World Scientific 2007, 295–306
  • [27] Petruşel A., Rus I.A., Yao J.C., Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J. Math., 2007, 11, 903–914
  • [28] Rhoades B.E., Some theorems on weakly contractive maps, Nonlinear Anal., 2001, 47, 2683–2693 http://dx.doi.org/10.1016/S0362-546X(01)00388-1
  • [29] Rus I.A., Petruşel A., Sîntămărian A., Data dependence of the fixed points set of some multivalued weakly Picard operators, Nonlinear Anal., 2003, 52, 1947–1959 http://dx.doi.org/10.1016/S0362-546X(02)00288-2
  • [30] Rus I.A., Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001
  • [31] Rus I.A., Picard operators and applications, Sci. Math. Japon., 2003, 58, 191–219
  • [32] Rus I.A., Strict fixed point theory, Fixed Point Theory, 2003, 4, 177–183
  • [33] Rus I.A., The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory, 2008, 9, 541–559
  • [34] Singh S.L., Bhatnagar C., Mishra S.N., Stability of iterative procedures for multivalued maps in metric spaces, Demonstratio Math., 2005, 37, 905–916
  • [35] Singh S.L., Prasad B., Kumar A., Fractals via iterated functions and multifunctions, Chaos Solitons & Fractals, 2009, 39, 1224–1231 http://dx.doi.org/10.1016/j.chaos.2007.06.014

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-010-0009-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.