Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2009 | 7 | 1 | 46-53

Tytuł artykułu

Three-dimensional terminal toric flips

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We describe three-dimensional terminal toric flips. We obtain the complete local description of three-dimensional terminal toric flips.

Słowa kluczowe

Wydawca

Czasopismo

Rocznik

Tom

7

Numer

1

Strony

46-53

Opis fizyczny

Daty

wydano
2009-03-01
online
2009-01-10

Twórcy

autor
  • Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, Japan
autor
  • Faculty of Economics and Information, Gifu Shotoku Gakuen University, Nakauzura Gifu, Japan
  • Department of Mathematics, Tokyo Metropolitan University, Tokyo, Japan
  • Department of Mathematics, Tokyo Metropolitan University, Tokyo, Japan

Bibliografia

  • [1] Fujino O., Equivariant completions of toric contraction morphisms, Tohoku Math. J., 2006, 58, 303–321 http://dx.doi.org/10.2748/tmj/1163775132[Crossref]
  • [2] Fujino O., Special termination and reduction to pl flips, In: Flips for 3-folds and 4-folds, Oxford University Press, 2007, 63–75
  • [3] Fujino O., Sato H., Introduction to the toric Mori theory, Michigan Math. J., 2004, 52(3), 649–665 http://dx.doi.org/10.1307/mmj/1100623418[Crossref]
  • [4] Fulton W., Introduction to toric varieties, Annals of Mathematics Studies 131, The William H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993
  • [5] Ishida M., On the terminal toric singularities of dimension three, In: Goto S. (Ed.), Commutative Algebra, Karuizawa, Japan, 1982, 54–70
  • [6] Ishida M., Iwashita N., Canonical cyclic quotient singularities of dimension three, Complex analytic singularities, 135–151, Adv. Stud. Pure Math., 8, North-Holland, Amsterdam, 1987
  • [7] Kawamata Y., Matsuda K., Matsuki K., Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, 283–360, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987
  • [8] Matsuki K., Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002
  • [9] Oda T., Convex bodies and algebraic geometry, An introduction to the theory of toric varieties, Translated from the Japanese, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 15, Springer-Verlag, Berlin, 1988
  • [10] Reid M., Decomposition of toric morphisms, Arithmetic and geometry II, 395–418, Progr. Math., 36, Birkhäuser Boston, Boston, MA, 1983
  • [11] Reid M., Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 345–414, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987
  • [12] Sato H., Combinatorial descriptions of toric extremal contractions, Nagoya Math. J., 2005, 180, 111–120
  • [13] Takano Y., On flipping contractions of three-dimensional toric varieties with non-ℚ-factorial terminal singularities, Master’s thesis, Tokyo Metropolitan University, 2008 (in Japanese)

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_s11533-008-0062-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.