EN
Let Ω= [a, b] × [c, d] and T 1, T 2 be partial integral operators in $$ C $$(Ω): (T 1 f)(x, y) = $$ \mathop \smallint \limits_a^b $$ k 1(x, s, y)f(s, y)ds, (T 2 f)(x, y) = $$ \mathop \smallint \limits_c^d $$ k 2(x, ts, y)f(t, y)dt where k 1 and k 2 are continuous functions on [a, b] × Ω and Ω × [c, d], respectively. In this paper, concepts of determinants and minors of operators E−τT 1, τ ∈ ℂ and E−τT 2, τ ∈ ℂ are introduced as continuous functions on [a, b] and [c, d], respectively. Here E is the identical operator in C(Ω). In addition, Theorems on the spectra of bounded operators T 1, T 2, and T = T 1 + T 2 are proved.