Let k be a field, let $$ G $$ be a finite group. We describe linear $$ G $$-gradings of the polynomial algebra k[x 1, ..., x m] such that the unit component is a polynomial k-algebra.
[1] Kane R., Reflection groups and invariant theory, Springer-Verlag, New York, Berlin, Heidelberg, 2001
[2] Kraft H., Geometrische Methoden in der Invariantentheorie, Vieweg & Sohn, Braunschweig, 1985 (in German)
[3] Li W., Remarks on rings of constants of derivations II, Comm. Algebra, 1992, 20, 2191–2194 http://dx.doi.org/10.1080/00927879208824456
[4] Maubach S., An algorithm to compute the kernel of a derivation up to a certain degree, J. Symbolic Comput., 2000, 29, 959–970 http://dx.doi.org/10.1006/jsco.1999.0334
[5] Nowicki A., Strelcyn J.M., Generators of rings of constants for some diagonal derivations in polynomial rings, J. Pure Appl. Algebra, 1995, 101, 207–212 http://dx.doi.org/10.1016/0022-4049(94)00011-7