In this paper we have proved a main theorem concerning the | $$\bar N$$ , p n; δ |k summability methods, which generalizes a result of Bor and Özarslan [3].
[1] H. Bor: “On two summability methods”, Math. Proc. Cambridge Philos. Soc., Vol. 97, (1985), pp. 147–149. http://dx.doi.org/10.1017/S030500410006268X
[2] H. Bor: “On local property of | \(\bar N\) , p n; δ |k summability of factored Fourier series”, J. Math. Anal. Appl., Vol. 179, (1993), pp. 646–649. http://dx.doi.org/10.1006/jmaa.1993.1375
[3] H. Bor and H.S. Özarslan: “On the quasi power increasing sequences”, J. Math. Anal. Appl., Vol. 276, (2002), pp. 924–929. http://dx.doi.org/10.1016/S0022-247X(02)00494-8
[4] T.M. Flett: “On an extension of absolute summability and some theorems of Little-wood and Paley”, Proc. London Math. Soc., Vol. 7, (1957), pp. 113–141.
[5] T.M. Flett: “Some more theorems concerning the absolute summability of Fourier series”, Proc. London Math. Soc., Vol. 8, (1958), pp. 357–387.
[6] G.H. Hardy: Divergent Series, Oxford University Press, Oxford, 1949.
[7] L. Leindler: “A new application of quasi power increasing sequences”, Publ. Math. Debrecen, Vol. 58, (2001), pp. 791–796.