Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 3 | 1 |

Tytuł artykułu

A novel approach to the evaluation of interface roughness scattering form factor in intersubband transitions

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We propose a modification of the interface roughness (IFR) scattering form factor in intersubband transitions.We properly derived a formula for the form factor for IFR scattering in terms of the integrals of the envelope wave functions. This novel form factor is more global nature than the old one (proposed by Ando) and may be suitable for a wide range of applications. In this paper, we calculate and compare the absorption linewidth with the application of the old form factor and novel one. In different from previous calculations, with the same surface profile (Δ, Λ), the calculation results the interface roughness scattering absorption linewidth with the application of the new form factor is greater than twice the old one. Our numerical calculations may better explain the experimental results the well-width dependence of intersubband absorption linewidth.

Twórcy

  • College of Science, Can Tho University, 3-2 Road, Can Tho City, Vietnam
  • College of Science, Can Tho University, 3-2 Road, Can Tho City, Vietnam
autor
  • School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam,

Bibliografia

  • [1] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Quantum Cascade Laser, Science 264, 553 (1994).
  • [2] C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, UltraBroadband Semiconductor Laser, Nature (London) 415, 883 (2002).
  • [3] R. Köhler, A.Tredicucci, F.Beltram, H.E.Beere, E.H.Linfield, A.G.Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature (London) 417, 156 (2002).
  • [4] C. Sirtori and R. Teissier, Intersubband Transitions in Quantum Structures, edited by R. Paiella (McGraw-Hill, New York, 2006).
  • [5] B. F. Levine, Quantum well infrared photodetectors, J. Appl. Phys. 74, R1 (1993).
  • [6] T. Unuma, S. Takata, Y. Sakasegawa, K. Hirakawa, and A. Nakamura, Intersubband transition energy and linewidth modified by a submonolayer AlAs insertion into GaAs quantum wells, J. Appl. Phys. 109, 043506 (2011). [WoS]
  • [7] H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors: Physics and Applications (Springer, New York, 2006).
  • [8] K. L. Campman, H. Schmidt, A. Imamoglu, and A. C. Gossard, Interface roughness and alloy-disorder scattering contributions to intersubband transition linewidths, Appl. Phys. Lett. 69, 2554 (1996).
  • [9] T. Unuma, T. Takahashi, T. Noda, M. Yoshita, H. Sakaki, M. Baba, and H. Akiyama, Effects of interface roughness and phonon scattering on intersubband absorption linewidth in a GaAs quantum well, Appl. Phys Lett. 78, 3448 (2001).
  • [10] J. B. Williams, M. S. Sherwin, K. D. Maranowski, and A. C. Gossard, Dissipation of Intersubband Plasmons in Wide Quantum Wells, Phys. Rev. Lett. 87, 037401 (2001). [PubMed]
  • [11] C. A. Ullrich and G. Vignale, Theory of the Linewidth of Intersubband Plasmons in Quantum Wells, Phys. Rev. Lett. 87, 037402 (2001). [PubMed]
  • [12] T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities, J. Appl. Phys. 93, 1586 (2003).
  • [13] S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützmacher, M. Giovannini, and J. Faist, Interfaceroughness- induced broadening of intersubband electroluminescence inp-SiGe andn-GaInAs/AlInAs quantum-cascade structures, Appl. Phys. Lett. 86, 062113 (2005).
  • [14] D. N. Quang, N. N. Dat, N. T. Tien, and D. N. Thao, Single-valued estimation of the interface profile from intersubband absorption linewidth data, Appl. Phys Lett. 100, 113103 (2012). [WoS]
  • [15] T. Ando, A. B. Fowler, and F. Stern, Electronics properties two-dimensional systems, Rev. Mod. Phys. 54, 437 (1982).
  • [16] D. N. Quang, L. Tuan, and N. T. Tien, Electron mobility in Gaussian heavily doped ZnO surface quantum wells, Phys. Rev. B 77, 125326 (2008).
  • [17] M. Nakayama, Theory of Electromagnetic Response of Solid Surface, J. Phys. Soc. Jpn. 39, 265 (1975).
  • [18] T. Ando, Subband Structure and Inter-Subband Absorption in an Accumulation Layer in Strong Magnetic Fields, J. Phys. Soc. Jpn. 44, 475 (1978).
  • [19] T. Ando, Linewidth intersubband absorption in inversion layer, J. Phys. Soc. Jpn. 54, 2671 (1985).
  • [20] B. Mukhopadhyay and B. K. Basu, Linewidth for interconduction subband transition in Si/Si1−xGex quantum wells, Phys. Stat. Sol. B 241, 1859 (2004).
  • [21] D. N. Quang, N. H. Tung, N. T. Hong, and T. T. Hai, wo-Side Doping Effects on the Mobility of Carriers in Square Quantum Wells, J. Phys. Soc. Jpn. 80, 044714 (2011).
  • [22] G. Bastard,Wave Mechanics Applied to Semiconductor Hetero-structures (Les Editions de Physique, Paris, 1988).
  • [23] P. von Allmen, M. Berz, G. Petrocelli, F.-K. Reinhart, and G. Harbeke, Inter-sub-band absorption in GaAs/AlGaAs quantum wells between 4.2 K and room temperature, Semicond. Sci. Technol. 3, 1211 (1988).
  • [24] M. Tanaka and H. Sakaki, Atomistic models of interface structures of GaAs/AlxGa1−xAs (x = 0.2-1) quantum wells grown by interrupted and uninterrupted MBE, J. Cryst. Growth 81, 153 (1987).

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_nsmmt-2014-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.