We study the dispersion relations and spectra of invariant Schrödinger operators on a graphyne structure (lithographite). In particular, description of different parts of the spectrum, band-gap structure, and Dirac points are provided.
Mathematics Department, Texas A&M University, College Station, TX 77843-3365
Bibliografia
C. Amovilli, F. Leys, N. March, Electronic Energy Spectrum of Two-Dimensional Solids and a Chain of C Atoms from a Quantum Network Model. J. Math. Chem. 36(2), 93–112 (2004) [Crossref]
D. Bardhan, Novel New Material Graphyne Can Be A Serious Competitor To Graphene. http://techiebuzz. com/science/graphyne.html (2012)
G. Berkolaiko, P. Kuchment, Introduction to quantum graphs AMS, Providence, RI (2012)
G. Borg, Eine Umkehrung der Sturm-Liouvillischen Eigenwertaufgabe, Acta Math. 78, 1–96(1946)
M. J. Bucknum, E. A. Castro, The squarographites: A lesson in the chemical topology of tessellations in 2- and 3-dimensions. Solid State Sciences 10, 1245–1251 (2008) [WoS]
M.S.P. Eastham, The Spectral Theory of Periodic Differential Equations Edinburgh-London: Scottish Acad. Press Ltd. (1973)
A. Enyanshin, A. Ivanovskii, Graphene Alloptropes: Stability, Structural and Electronic Properties from DF-TB Calculations. Phys. Status Solidi (b) 248, 1879–1883 (2011)
C.L. Fefferman, M.I. Weinstein, Honeycomb latice potentials and Dirac points J. Amer. Math. Soc. 25, 1169–1220 (2012) [Crossref]
C.L. Fefferman, M.I. Weinstein, Waves in Honeycomb Structures http://arxiv.org/pdf/1212.6684.pdf
A. Geim, Nobel lecture: Random walk to graphene Rev. Mod. Phys. 83, 851–862 (2011) [WoS]
E. Korotyaev, I. Lobanov, Schrödinger operators on zigzag graphs. Ann. Henri Poincaré 8(6), 1151–1176 (2007)
E. Korotyaev, I. Lobanov, Zigzag periodic nanotube in magnetic field. http://arxiv.org/list/math.SP/0604007 (2006)
P. Kuchment, Quantum graphs I. Some basic structures. Waves in Random media 14, S107–S128 (2004)
P. Kuchment, Quantum graphs II. Some spectral properties of quantum and combinatorial graphs J. Phys. A 38(22), 4887–4900 (2005)
P. Kuchment, Floquet Theory for Partial Differential Equations Birkhauser Verlag, Basel (1993)
P. Kuchment, L. Kunyansky, Spectral properties of high-contrast band-gap materials and operators on graphs., Experimental Mathematics 8, 1–28 (1999) [Crossref]
P. Kuchment, O. Post, On the Spectra of Carbon Nano-Structures. Commun. Math. Phys. 275, 805–826 (2007) [WoS]
D. Malko, C. Neiss, F. Viñes,A. Görling, Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones. Phys. Rev. Lett. 108, 086804 (2012) [WoS][PubMed][Crossref]
K. Novoselov, Nobel lecture: Graphene: Materials in the flatland Rev. Mod.Phys. 83, 837–849 (2011) [WoS]
K. Pankrashkin, Spectra of Schrödinger operators on equilateral quantum graphs, Lett. Math. Phys. 77(2), 139–154 (2006) [Crossref]
M. Reed, B. Simon, Methods of Modern Mathematical Physics: Functional analysis Academic Press, Vol. 4 (1972)
B. Simon. On the genericity of nonvanishing instability intervals in Hills equation Ann. Inst. Henri Poincaré XXIV(1), 91–93 (1976)
K. Ruedenberg, C.W. Scherr, Free-electron network model for conjugated systems I. Theory. J. Chem. Phys. 21(9), 1565–1581 (1953) [Crossref]
L. E. Thomas. Time dependent approach to scattering from impurities in a crystal. Comm. Math. Phys. 33, 335–343 (1973)