Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 1 |

Tytuł artykułu

Pullback incremental attraction

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A pullback incremental attraction, a nonautonomous version of incremental stability, is introduced for nonautonomous systems that may have unbounded limiting solutions. Its characterisation by a Lyapunov function is indicated.

Wydawca

Rocznik

Tom

1

Opis fizyczny

Daty

otrzymano
2013-09-06
zaakceptowano
2013-11-11
online
2013-12-27

Twórcy

  • Institut für Mathematik
    Goethe-Universität, 60054 Frankfurt am Main, Germany
  • Institut für Mathematik
    Goethe-Universität, 60054 Frankfurt am Main, Germany

Bibliografia

  • [1] D. Angeli, A Lyapunov approach to the incremental stability properties, IEEE Trans. Automat. Control 47 (2002), 410-421.
  • [2] T. Caraballo, M.J. Garrido Atienza and B. Schmalfuß, Existence of exponentially attracting stationary solutions for delay evolution equations. Discrete Contin. Dyn. Syst. Ser. A 18 (2007), 271-293.
  • [3] T. Caraballo, P.E. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation. Appl. Math. Optim. 50 (2004), 183-207.
  • [4] C.M. Dafermos, An invariance principle for compact processes, J. Differential Equations 9 (1971), 239-252.
  • [5] L. Grüne, P.E. Kloeden, S. Siegmund and F.R. Wirth, Lyapunov’s second method for nonautonomous differential equations, Discrete Contin. Dyn. Syst. Ser. A 18 (2007), 375-403.
  • [6] P.E. Kloeden, Lyapunov functions for cocycle attractors in nonautonomous difference equations, Izvetsiya Akad Nauk Rep Moldovia Mathematika 26 (1998), 32-42.
  • [7] P.E. Kloeden, A Lyapunov function for pullback attractors of nonautonomous differential equations, Electron. J. Differ. Equ. Conf. 05 (2000), 91-102.
  • [8] P.E. Kloeden and T. Lorenz, Stochastic differential equations with nonlocal sample dependence, Stoch. Anal. Appl. 28 (2010), 937-945.
  • [9] P.E. Kloeden and T. Lorenz, Mean-square random dynamical systems, J. Differential Equations 253 (2012), 1422- 1438.
  • [10] P.E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Amer. Math. Soc., Providence, 2011.
  • [11] B.S. Rüffer, N. van de Wouw and M. Mueller, Convergent systems vs. incremental stability, Systems Control Lett. 62 (2013), 277-285.
  • [12] E.D. Sontag, Comments on integral variants of ISS, Systems Control Lett. 34 (1998), 93-100.
  • [13] A.M. Stuart and A.R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge University Press, Cambridge, 1996.
  • [14] Fuke Wu and P.E. Kloeden, Mean-square random attractors of stochastic delay differential equations with random delay, Discrete Contin. Dyn. Syst. Ser. B 18, No.6, (2013), 1715-1734.
  • [15] T. Yoshizawa, Stability Theory by Lyapunov’s Second Method. Math. Soc Japan, Tokyo, 1966.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_msds-2013-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.