Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 21 | 2 | 145-152

Tytuł artykułu

Riemann Integral of Functions from ℝ into Real Banach Space

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this article we deal with the Riemann integral of functions from R into a real Banach space. The last theorem establishes the integrability of continuous functions on the closed interval of reals. To prove the integrability we defined uniform continuity for functions from R into a real normed space, and proved related theorems. We also stated some properties of finite sequences of elements of a real normed space and finite sequences of real numbers. In addition we proved some theorems about the convergence of sequences. We applied definitions introduced in the previous article [21] to the proof of integrability.

Słowa kluczowe

Wydawca

Rocznik

Tom

21

Numer

2

Strony

145-152

Opis fizyczny

Daty

wydano
2013-06-01

Twórcy

autor
  • Hirosaki-city Aomori, Japan
autor
  • Gifu National College of Technology Japan
  • Shinshu University Nagano, Japan

Bibliografia

  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  • [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  • [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  • [5] Józef Białas. Properties of the intervals of real numbers. Formalized Mathematics, 3(2): 263-269, 1992.
  • [6] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
  • [7] Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
  • [8] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
  • [9] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
  • [10] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  • [11] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  • [12] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
  • [13] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  • [14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  • [15] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
  • [16] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics, 9(1):191-196, 2001.
  • [17] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Darboux’s theorem. Formalized Mathematics, 9(1):197-200, 2001.
  • [18] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability forpartial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.
  • [19] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.
  • [20] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
  • [21] Keiichi Miyajima, Takahiro Kato, and Yasunari Shidama. Riemann integral of functions from R into real normed space. Formalized Mathematics, 19(1):17-22, 2011. doi:10.2478/v10037-011-0003-8.[Crossref]
  • [22] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997.
  • [23] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. More on continuous functions on normed linear spaces. Formalized Mathematics, 19(1):45-49, 2011. doi:10.2478/v10037-011-0008-3.[Crossref]
  • [24] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
  • [25] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
  • [26] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
  • [27] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.
  • [28] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
  • [29] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.
  • [30] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
  • [31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  • [32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
  • [33] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_forma-2013-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.