We solve a recent open problem about a new transformation mapping the set of copulas into itself. The obtained mapping is characterized in algebraic terms and some limit results are proved.
Department for Mathematics, University of Salzburg, Salzburg, Austria
Bibliografia
[1] C. Alsina, A. Damas, and J. J. Quesada-Molina. Some functionals for copulas. Int. J. Math. Math. Sci., 14(1):45–54, 1991.
[2] C. Bernard, X. Jiang, and S. Vanduffel. A note on “Improved Fréchet bounds and model-free pricing of multi-asset options” by Tankov (2011). J. Appl. Probab., 49(3):866–875, 2012.
[3] B. De Baets, H. De Meyer, J. Kalická, and R. Mesiar. Flipping and cyclic shifting of binary aggregation functions. Fuzzy Sets Syst., 160(6):752–765, 2009.
[4] E. Di Bernardino and D. Rullière. On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators. Dependence Modeling, 1:1–36, 2013.
[5] A. Dolati and M. Úbeda-Flores. Constructing copulas by means of pairs of order statistics. Kybernetika (Prague), 45(6):992– 1002, 2009.
[6] F. Durante. A new class of symmetric bivariate copulas. J. Nonparametr. Stat., 18(7-8):499–510, (2007), 2006.
[7] F. Durante, J. Fernández-Sánchez, and R. Pappadà. Copulas, diagonals and tail dependence. Fuzzy Sets Syst., in press, 2015.
[8] F. Durante, J. Fernández-Sánchez, and C. Sempi. Multivariate patchwork copulas: a unified approach with applications to partial comonotonicity. Insurance Math. Econom., 53:897–905, 2013.
[9] F. Durante, R. Foschi, and P. Sarkoci. Distorted copulas: constructions and tail dependence. Comm. Statist. Theory Methods, 39(12):2288–2301, 2010.
[10] F. Durante, A. Kolesárová, R. Mesiar, and C. Sempi. Semilinear copulas. Fuzzy Sets Syst., 159(1):63–76, 2008.
[11] C. Genest, J. J. Quesada-Molina, J. A. Rodríguez-Lallena, and C. Sempi. A characterization of quasi-copulas. J. Multivariate Anal., 69(2):193–205, 1999.
[12] E. P. Klement, R. Mesiar, and E. Pap. Transformations of copulas. Kybernetika (Prague), 41(4):425–434, 2005.
[13] A. Kolesárová and R. Mesiar. On linear and quadratic constructions of aggregation functions. Fuzzy Sets Syst., in press, 2015.
[14] A. Kolesárová, R. Mesiar, and J. Kalická. On a new construction of 1–Lipschitz aggregation functions, quasi–copulas and copulas. Fuzzy Sets Syst., 226:19–31, 2013.
[15] R. Mesiar and A. Stupnanová. Open problems from the 12th International Conference on Fuzzy Sets Theory and Its Applications. Fuzzy Sets Syst., in press, 2015.
[16] F. Michiels and A. De Schepper. How to improve the fit of Archimedean copulas by means of transforms. Statist. Papers, 53(2):345–355, 2012.
[17] P. Mikusinski and M. D. Taylor. Some approximations of n-copulas. Metrika, 72(3):385–414, 2010.
[18] P. M. Morillas. A method to obtain new copulas from a given one. Metrika, 61(2):169–184, 2005.
[19] R. B. Nelsen. An introduction to copulas. Springer Series in Statistics. Springer, New York, second edition, 2006.
[20] R. B. Nelsen and M. Úbeda-Flores. The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas. C. R.Math. Acad. Sci. Paris, 341(9):583–586, 2005.
[21] P. Tankov. Improved Fréchet bounds and model-free pricing of multi-asset options. J. Appl. Probab., 48(2):389–403, 2011.
[22] E. A. Valdez and Y. Xiao. On the distortion of a copula and its margins. Scand. Actuar. J., 4:292–317, 2011.