Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 1 | 1 |

Tytuł artykułu

Non compact boundaries of complex analytic varieties in Hilbert spaces

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We treat the boundary problem for complex varieties with isolated singularities, of complex dimension greater than or equal to 3, non necessarily compact, which are contained in strongly convex, open subsets of a complex Hilbert space H.We deal with the problem by cutting with a family of complex hyperplanes and applying the already known result for the compact case.

Wydawca

Czasopismo

Rocznik

Tom

1

Numer

1

Opis fizyczny

Daty

otrzymano
2014-01-10
zaakceptowano
2014-05-26
online
2014-07-17

Twórcy

  • Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56123 Pisa, Italy
  • Dipartimento di Matematica, Università di Roma “Tor Vergata”, via della ricerca scientifica 1, I-00133 Roma,
    Italy
  • Dipartimento di Matematica e Informatica, Università di Parma, Parco Area delle
    Scienze 53/A, I-43124 Parma, Italy

Bibliografia

  • [1] L. Ambrosio, B. Kirchheim, Currents in metric spaces, Acta Math., 185 1 (2000), 1–80.
  • [2] L. Ambrosio, B. Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Ann., 318 3 (2000), 527–555.
  • [3] V. Aurich, Bounded analytic sets in Banach spaces, Ann. Inst. Fourier, 36 4 (1986), 229–243. [Crossref]
  • [4] G. Della Sala, Geometric properties of non-compact CR manifolds, Tesi 14, Edizioni della Normale, Pisa (2009), 103+xv.
  • [5] G. Della Sala, A. Saracco, Non-compact boundaries of complex analytic varieties, Int. J. Math. 18 2 (2007), 203–218. [Crossref][WoS]
  • [6] G. Della Sala, A. Saracco, Semi-global extension of maximally complex submanifolds, Bull. Aust. Math. Soc. 84 (2011), 458–474. [WoS]
  • [7] T.-C. Dinh, Conjecture de Globevnik-Stout et théorème de Morera pur une chaîne holomorphe, Ann. Fac. Sci. Toulouse Math. 8 (1999) 235–257.
  • [8] P. Dolbeault, G. Henkin, Surfaces de Riemann de bord donné dans CPn, in Contributions to complex analysis and analytic geometry, Aspects Math. (Vieweg, Braunschweig, 1994), pp. 163–187.
  • [9] P. Dolbeault, G. Henkin, Chaînes holomorphes de bord donné dans CPn, Bull. Soc. Math. France 125 (1997) 383–445.
  • [10] M. P. Gambaryan, Regularity condition for complex films, Uspekhi Mat. Nauk 40 (1985) 203–204.
  • [11] F. R. Harvey, H. B. Lawson Jr., On boundaries of complex analytic varieties. I, Ann. of Math. (2) 102 (1975), 223–290.
  • [12] F. R. Harvey, H. B. Lawson, Jr., On boundaries of complex analytic varieties. II, Ann. of Math. 106 (1977) 213–238.
  • [13] F. R. Harvey, H. B. Lawson, Jr., Addendum to Theorem 10.4 in “Boundaries of analytic varieties”,
  • [arXiv: math.CV/0002195] (2000).
  • [14] H. Lewy, On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. of Math. 64 (1956) 514–522.
  • [15] S. Mongodi, Some applications of metric currents to complex analysis, Man. Math. 141 (2013) 363–390.
  • [16] S. Mongodi, Positive metric currents and holomorphic chains in Hilbert spaces,
  • [arXiv:1207.5244], to appear in Rev. Mat. Iberoam. 31 (2015).
  • [17] G. Ruget, A propos des cycles analytiques de dimension infinie, Inv. Math. 8 (1969) 267–312.
  • [18] A. Saracco, Extension problems in complex and CR-geometry, Tesi 9, Edizioni della Normale, Pisa (2008), 153+xiv.
  • [19] G. Stolzenberg, Uniform approximation on smooth curves, Acta Math. 115 (1966) 185–198.
  • [20] J. Wermer, The hull of a curve in Cn, Ann. of Math. 68 (1958) 550–561.
  • [21] R. Williamson, L. Janos, Constructing metrics with the Heine-Borel property, Proc. A.M.S. 100 3 (1987), 567–573.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_coma-2014-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.