EN
In this paper, we study the static bending and free vibration of cross-ply laminated composite plates using sinusoidal deformation theory. The plate kinematics is based on the recently proposed Carrera Unified Formulation (CUF), and the field variables are discretized with the non-uniform rational B-splines within the framework of isogeometric analysis (IGA). The proposed approach allows the construction of higher-order smooth functions with less computational effort.Moreover, within the framework of IGA, the geometry is represented exactly by the Non-Uniform Rational B-Splines (NURBS) and the isoparametric concept is used to define the field variables. On the other hand, the CUF allows for a systematic study of two dimensional plate formulations. The combination of the IGA with the CUF allows for a very accurate prediction of the field variables. The static bending and free vibration of thin and moderately thick laminated plates are studied. The present approach also suffers fromshear locking when lower order functions are employed and shear locking is suppressed by introducing a modification factor. The effectiveness of the formulation is demonstrated through numerical examples.