Let X be a compact convex set and let ext X stand for the set of all extreme points of X. We characterize those bounded function defined on ext X which can be extended to an affine Baire-one function on the whole set X.
[1] E.M. Alfsen: Compact convex sets and boundary integrals, Springer-Verlag, New York-Heidelberg, 1971.
[2] E.M. Alfsen: “Boundary values for homomorphisms of compact convex sets”, Acta Math., Vol. 120, (1968), pp. 149–159. http://dx.doi.org/10.1007/BF02394608
[3] E.M. Alfsen: “On the Dirichlet problem on the Choquet boundary”, Math. Scand., Vol. 19, (1965), pp. 113–121.
[4] N. Boboc and A. Cornea: “Convex cones of lower semicontinuous functions on compact spaces”, Rev. Roumaine Math. Pures Appl., Vol. 12, (1967), pp. 471–525.
[5] G. Choquet: Lectures on analysis I–III., W.A. Benjamin Inc., New York-Amsterdam, 1969.
[6] G. Choquet: “Remarque à propos de la démonstration de l'unicité de P.A. Meyer”, Séminaire Brelot-Choquet-Deny (Théorie de Potentiel), Vol. 8, (1961/62) 6 année.
[7] E.G. Effros: “Structure in simplexes II.”, J. Funct. Anal., Vol. 1, (1967), pp. 361–391. http://dx.doi.org/10.1016/0022-1236(67)90008-0
[8] E. Hewitt and K. Stromberg: Real and abstract analysis, Springer-Verlag, New York-Berlin, 1969.
[9] A. Lazar: “Affine products of simplexes”, Math. Scand., Vol. 22, (1968), pp. 165–175.
[10] J. Lukeš, J. Malý, I. Netuka, M. Smrčka and J. Spurný: “On approximation of affine Baire-one functions”, Israel Jour. Math., Vol. 134, (2003), pp. 255–289.
[11] J. Lukeš, T. Mocek, M. Smrčka and J. Spurný: “Choquet like sets in function spaces”, Bull. Sci. Math., Vol. 127, (2003), pp. 397–437. http://dx.doi.org/10.1016/S0007-4497(03)00042-3
[12] J. Lukeš, J. Malý, and L. Zajíček: Fine topology methods in real analysis and potential theory, Lecture Notes in Math., Vol. 1189, Springer-Verlag, 1986.
[13] M. Rogalski: “Opérateurs de Lion, projecteurs boréliens et simplexes analytiques”, J. Funct. Anal., Vol. 2, (1968), pp. 458–488. http://dx.doi.org/10.1016/0022-1236(68)90005-0
[14] J. Spurný: “On the Dirichlet problem for the functions of the first Baire class”, Comment. Math. Univ. Carolin., Vol. 42, (2001), pp. 721–728.
[15] J. Spurný: “Representation of abstract affine functions”, Real. Anal. Exchange, Vol. 28(2), (2002/2003), pp. 1–18.