[1] I. Assem and D. Happel: “Generalized tilted algebras of type \(\mathbb{A}_n \) ”, Comm. Algebra, Vol. 9, (1981), pp. 2101–2125.
[2] I. Assem and A. Skowroński: “Iterated tilted algebras of type \( \tilde{\mathbb{A}}_n\) ”, Math. Z., Vol. 195, (1987), pp. 269–290. http://dx.doi.org/10.1007/BF01166463
[3] I. Assem and A. Skowroński: “Algebras with cycle-finite derived categories”, Math. Ann., Vol. 280, (1988), pp. 441–463. http://dx.doi.org/10.1007/BF01456336
[4] M. Auslander, M. Platzeck and I. Reiten: “Coxeter functors without diagrams”, Trans. Amer. Math. Soc., Vol. 250, (1979), pp. 1–46. http://dx.doi.org/10.2307/1998978
[5] M. Barot and J. A. de la Peña: “The Dynkin type of non-negative unit form”, Expo. Math., Vol. 17, (1999), pp. 339–348.
[6] K. Bongartz: “Tilted Algebras”, Lecture Notes in Math., Vol. 903, (1981), pp. 26–38.
[7] K. Bongartz and P. Gabriel: “Covering spaces in representation theory”, Invent. Math., Vol. 65, (1981), pp. 331–378. http://dx.doi.org/10.1007/BF01396624
[8] M. C. R. Butler and C. M. Ringel: “Auslander-Reiten sequences with few middle terms and applications to string algebras”, Comm. Algebra, Vol. 15, (1987), pp. 145–179.
[9] Ch. Geiß and J. A. de la Peña: “Auslander-Reiten components for clans”, Bol. Soc. Mat. Mexicana, Vol. 5, (1999), pp. 307–326.
[10] D. Happel: Triangulated categories in the representation theory of finite-dimensional algebras, London Math. Soc. Lecture Note Series, 1988.
[11] D. Happel: “Auslander-Reiten triangles in derived categories of finite-dimensional algebras”, Proc. Amer. Math. Soc., Vol. 112, (1991), pp. 641–648. http://dx.doi.org/10.2307/2048684
[12] D. Happel and C. M. Ringel: “Tilted algebras”, Trans. Amer. Math. Soc., Vol. 274, (1982), pp. 399–443. http://dx.doi.org/10.2307/1999116
[13] D. Hughes and J. Waschbüsch: “Trivial extensions of tilted algebras”, Proc. London Math. Soc., Vol. 46, (1983), pp. 347–364.
[14] B. Keller and D. Vossieck: “Aisles in derived, categories”, Bull. Soc. Math. Belg., Vol. 40, (1988), pp. 239–253.
[15] J. Nehring: “Polynomial growth trivial extensions of non-simply connected algebras”, Bull. Polish Acad. Sci. Math., Vol. 36, (1988), pp. 441–445.
[16] J. Rickard: “Morita theory for derived categories”, J. London Math. Soc., Vol. 39, (1989), pp. 436–456.
[17] C. M. Ringel: Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., 1984.
[18] C. M. Ringel: “The repetitive algebra of a gentle algebra”, Bol. Soc. Mat. Mexicana, Vol. 3, (1997), pp. 235–253.
[19] A. Skowroński and J. Waschbüsch: “Representation-finite biserial algebras”, J. Reine Angew. Math., Vol. 345, (1983), pp. 172–181.
[20] J. L. Verdier: “Categories derivées, état 0”, Lecture Notes in Math., Vol. 569, (1977), pp. 262–331.
[21] D. Vossieck: “The algebras with discrete derived category”, J. Algebra, Vol. 243, (2001), pp. 168–176. http://dx.doi.org/10.1006/jabr.2001.8783
[22] H. Tachikawa and T. Wakamatsu: “Applications of reflection functors for selfinjective algebras”, Lecture Notes in Math., Vol. 1177, (1986), pp. 308–327. http://dx.doi.org/10.1007/BFb0075271