Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 3 | 1 |

Tytuł artykułu

Two-level Cretan matrices constructed using SBIBD

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Two-level Cretan matrices are orthogonal matrices with two elements, x and y. At least one element per row and column is 1 and the other element has modulus ≤ 1. These have been studied in the Russian literature for applications in image processing and compression. Cretan matrices have been found by both mathematical and computational methods but this paper concentrates on mathematical solutions for the first time. We give, for the first time, families of Cretan matrices constructed using the incidence matrix of a symmetric balanced incomplete block design and Hadamard related difference sets.

Wydawca

Czasopismo

Rocznik

Tom

3

Numer

1

Opis fizyczny

Daty

otrzymano
2015-03-17
zaakceptowano
2015-07-25
online
2015-08-04

Twórcy

  • Saint Petersburg State University of Aerospace Instrumentation, 67, B. Morskaia St., 190000, St. Petersburg,
    Russian Federation
  • School of Computing and Information Technology, Faculty of Engineering and
    Information Sciences, University of Wollongong, NSW 2522, Australia

Bibliografia

  • [1] N. A. Balonin. Existence of Mersenne Matrices of 11th and 19th Orders. Informatsionno-upravliaiushchie sistemy, 2013. 2, pp. 89 – 90 (In Russian).
  • [2] N. A. Balonin and L. A. Mironovski. Hadamard matrices of odd order, Informatsionno-upravliaiushchie sistemy, 2006.3, pp. 46–50 (In Russian).
  • [3] N. A. Balonin and Jennifer Seberry. Remarks on extremal and maximum determinant matrices with real entries ≤ 1. Informatsionno-upravliaiushchie sistemy, 5, (71) (2014), p2–4. (In English).
  • [4] N. A. Balonin and M. B. Sergeev. On the issue of existence of Hadamard and Mersenne matrices. Informatsionnoupravliaiushchie sistemy, 2013. 5 (66), pp. 2–8 (In Russian).
  • [5] J. Hadamard, Résolution d’une question relative aux déterminants. Bulletin des Sciences Mathematiques. 1893. Vol. 17. pp. 240-246.
  • [6] La Jolla Difference Set Repository. URL www.ccrwest.org/ds.html. Viewed 2014:10:03.
  • [7] Jennifer Seberry and Mieko Yamada. Hadamard matrices, sequences, and block designs, Contemporary Design Theory: A Collection of Surveys, J. H. Dinitz and D. R. Stinson, eds., John Wiley and Sons, Inc., 1992. pp. 431–560.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_1515_spma-2015-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.