In this paper we characterize Moore-Penrose inverses of Gram matrices leaving a cone invariant in an indefinite inner product space using the indefinite matrix multiplication. This characterization includes the acuteness (or obtuseness) of certain closed convex cones.
Department of Mathematics, National Institute of Technology Warangal, Warangal - 506 004, India,
Bibliografia
[1] A. Ben-Israel and T.N.E., Greville, Generalized Inverses:Theory and Applications, 2nd edition, Springer Verlag, New York, 2003.
[2] A. Berman and R.J. Plemmons, NonnegativeMatrices in theMathematical Sciences, Classics in AppliedMathematics, SIAM, 1994.
[3] J. Bognar, Indefinite inner product spaces, Springer Verlag, 1974.
[4] A. Cegielski, Obtuse cones and Gram matrices with non-negative inverse, Linear Algebra Appl., 335, 167-181, 2001.
[5] L. Collatz, Functional Analysis and Numerical Mathematics, Academic Press, New York, 1966.
[6] I. Gohberg, P. Lancaster and L. Rodman, Indefinite Linear Algebra and Applications, Birkhauser, Basel, Boston, Berlin, 2005.
[7] T. Kurmayya and K.C. Sivakumar, Nonnegative Moore-Penrose inverse of Gram operators, Linear Algebra Appl., 422, 471- 476, 2007.
[8] Ar. Meenakshi and D. Krishnaswamy, Principal pivot transforms of range symmetric matrices in Minkowski space, Tamkang J. Math. 37 211-219 2006.
[9] M.Z. Petrovic and P.S. Stanimirovic, Representations and computations of {2, 3∼} and {2, 4∼} inverses in indefinite inner product spaces, Appl. Math. Comput., 254, 157-171, 2015.
[10] I.M. Radojevic, New results for EP matrices in indefinite inner product spaces, Czechoslovak Math. J. 64 91-103, 2014.
[11] K. Ramanathan, K. Kamaraj and K.C. Sivakumar, Indefinite product of matrices and applications to indefinite inner product spaces, J. Anal., 12, 135-142, 2004.
[12] K. Ramanathan and K.C. Sivakumar, Theorems of the alternative order indefinite inner product spaces, J. Optim. Theory Appl., 137 99-104, 2008.
[13] K. Ramanathan and K.C. Sivakumar, Nonnegative Moore-Penrose Inverse of Gram Matrices in an Indefinite Inner Product Space, J. Optim Theory Appl., 140, 189-196, 2009.
[14] Sachindranath Jayaraman, EP matrices in indefinite inner product spaces, Funct. Anal. Approx. Comput., 4 23-31, 2012.
[16] Sachindranath Jayaraman, The reverse order law in indefinite inner product spaces, Combinatorial matrix theory and generalized inverses of matrices, 133-141, Springer, New Delhi, 2013.
[17] K.C. Sivakumar, A new characterization of nonnegativity of Moore-Penrose inverses of Gram operators, Positivity, 13, 277- 286, 2009.