Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 4 | 1 |

Tytuł artykułu

Simulation of electrostatic field in electrospinning of polymer nanofibers

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Electrospinning is a popular process for fabricating submicron diameter gibers. The process applies a strong electric gield to launch a polymer jet that elongates to create the gine gibers. The jet dries as the solvent evaporates and the dried giber collects on a grounded surface. Most of electrospinning literatures focus the polymer solution compositions and the properties of the produced gibers. Less attention is applied to the electrostatic gield geometries and operating conditions. Through computer simulations and laboratory experiments thiswork shows that by applying the grounded voltage to different regions of the collector surface, the electric gield can be moved spatially to direct the electrospinning jets towards select locations of the grounded surface.

Słowa kluczowe

Wydawca

Rocznik

Tom

4

Numer

1

Opis fizyczny

Daty

otrzymano
2015-08-28
zaakceptowano
2015-11-11
online
2015-12-18

Twórcy

autor
autor
autor
autor

Bibliografia

  • [1] D.H. Reneker, A.L. Yarin, Hao Fong, and S. Koombhongse. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl.Phys., 87 (9), 4531-4531 (2000). [Crossref]
  • [2] C.J. Thompson, G.G. Chase, A.L. Yarin, D.H. Reneker. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer, 48 (23), 6913-6922 (2007). [Crossref][WoS]
  • [3] S. Rafiei, S. Maghsoodloo, B. Noroozi, V. Mottaghitalab, A. K. Haghi. Mathematical modeling in electrospinning process of nanofibers: a detailed review. Cellulose Chem. and Technol., 47 (5-6), 323-338 (2013).
  • [4] W.M. Edwards. Polyamide-acids, compositions thereof, and process for their preparation. US Patent 3179614 (1965).
  • [5] R.S. Irwin, C.E. Smullen. Formation of polypyromellitimide filaments. US Patent 3415782 (1968).
  • [6] P. Katta, M. Alessandro, R. D. Ramsier, and G. G. Chase. Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector. Nano Letter, 4 (11), 2215-2218 (2004). 4, No.
  • [7] Z. Zhong, J.Y. Howe, D.H. Reneker.Molecular scale imaging and observation of electron beam-induced changes of polyvinylidene fluoride molecules in electrospun nanofibers. Polymer, 54 (15), 3745-3756 (2013). [Crossref]
  • [8] A. L. Yarin, S. Koombhongse, D.H. Reneker. Bending instability in electrospinning of nanofibers. J. Appl. Phys., 89 (5), 3018- 3026 (2001). [Crossref]
  • [9] K. Arayanarakul, N. Choktaweesap, D. Aht-ong, C. Meechaisue, P. Supaphol. Effects of poly(ethylene glycol), inorganic salt, sodium dodecyl sulfate, and solvent system on electrospinning of poly(ethylene oxide). Macromol. Mater. Eng., 291 (6), 581–591(2006). [Crossref]
  • [10] L.S.Carnell, E.J. Siochi, N.M. Holloway, R.M. Stephens, C. Rhim, L.E. Niklason R.L.Clark. Alignedmats from electrospun single fibers. Macromolecules, 41 (14), 5345-5349 (2008). [Crossref][WoS]
  • [11] H. Pan, L. Li, L. Hu, X. Cui. Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer, 47 (14), 4901-4904 (2006). [Crossref]
  • [12] Y.Wu, L.A. Carnell, R.L. Clark. Control of electrospun mat width through the use of parallel auxiliary electrodes. Polymer, 48 (19), 5653-5661 (2007). [WoS][Crossref]
  • [13] M.L. ArrasMatthias, C. Grasl, H. Bergmeister, H. Schima, Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes. Sci. Technol. Adv. Mater., 13 (3), 035008 1-8 (2012). [WoS][Crossref]
  • [14] J.S. Varabhas, G.G. Chase, D.H. Reneker. New Methods to Electrospin Nanofibers. Journal of Engineered Fibers and Fabrics, 6 (3), 32-38 (2011).
  • [15] W.E. Teo, S. Ramakrishna. A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17 (14), 89-106 (2006). [Crossref]
  • [16] H. Niu, X. Wang, T. Lin. Needleless Electrospinning: Developments and Performances. Nanofibers – Production, Properties and Functional Applications. InTech, Croatia, pp. 18-34 (2011).
  • [17] G. Viswanadam, G.G. Chase. Modified electric fields to control the direction of electrospinning jets. Polymer, 54 (4), 1397- 1404 (2013). [Crossref][WoS]
  • [18] H. Shin, Y. Li, A. Paynter, K. Nartetamrongsutt, G. G. Chase. Vertical rod method for electrospinning polymer fibers. Polymer, 65, 26-33 (2015). [Crossref]
  • [19] R. F. Graf. Modern Dictionary of Electronics (7th ed). Butterworth-Heinemann, United Kingdom, pp. 292 (1999).
  • [20] Halliday D, Resnick R. Fundamentals of physics. Wiley, New York, pp.449-459 (1974).
  • [21] John S Rigden, Macmillan. Encyclopedia of Physics. Simon & Schuster, New York, pp.353 (1996).
  • [22] S.K. Doss, R.J. Gelinas, R.G. Nelson, J. P. Ziagos. Adaptive Forward-Inverse Modeling of Reservoir Fluids Away from Wellbore. SciTech Connect, Washington, D.C. pp. 9 (1999).
  • [23] FlexPDE manual Version 6.33. PDE Solutions Inc., Spokane Valley, Washington, pp. 58 (2013).

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_1515_nsmmt-2015-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.