Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 2 | 1 |

Tytuł artykułu

The Fujiki class and positive degree maps

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We show that a map between complex-analytic manifolds, at least one ofwhich is in the Fujiki class, is a biholomorphism under a natural condition on the second cohomologies. We use this to establish that, with mild restrictions, a certain relation of “domination” introduced by Gromov is in fact a partial order.

Słowa kluczowe

Wydawca

Czasopismo

Rocznik

Tom

2

Numer

1

Opis fizyczny

Daty

otrzymano
2014-04-28
zaakceptowano
2015-02-24
online
2015-03-18

Twórcy

  • Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
  • Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
autor
  • Department of Mathematics, Indian Institute of Science, Bangalore 560012, India

Bibliografia

  • [1] Abramovich D., Karu K., Matsuki K., Włodarczyk J., Torification and factorization of birational maps, Jour. Amer. Math. Soc., 2002, 15, 531–572
  • [2] Arapura D., Kähler solvmanifolds, Int. Math. Res. Not., 2004(3), 131–137 [Crossref]
  • [3] Barlet D., How to use the cycle space in complex geometry, In: Several Complex Variables, Papers from the MSRI Program held in Berkeley, CA, 1995–1996, Math. Sci. Res. Inst. Publ., 37, Cambridge University Press, Cambridge, 1999, 25–42
  • [4] Beauville A., Endomorphisms of hypersurfaces and other manifolds, Internat. Math. Res. Notices, 2001(1), 53–58
  • [5] Bharali G., Biswas I., Rigidity of holomorphic maps between fiber spaces, Internat. J. Math., 2014, 25(1), #145006, 8pp. [Crossref]
  • [6] Blanchard A., Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup., 1956, 73, 157–202
  • [7] Carlson J.A., Toledo D., Harmonic mappings of Kähler manifolds to locally symmetric spaces, Inst. Hautes Etudes Sci. Publ. Math., 1989, 69, 173–201
  • [8] Fujiki A., Closedness of the Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci., 1978/79, 14, 1–52 [Crossref]
  • [9] Fujimoto Y., Endomorphisms of smooth projective 3-folds with non-negative Kodaira dimension, Publ. Res. Inst. Math. Sci., 2002, 38(1), 33–92
  • [10] Hironaka H., Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 1964, 79, 109–326
  • [11] Hironaka H., Flattening theorem in complex-analytic geometry, Amer. Jour. Math., 1975, 97, 503–547
  • [12] Toledo D., personal communication, 2013
  • [13] Varouchas J., Stabilité de la classe des variétés Kähleriennes par certaines morphismes propres, Invent.Math., 1984, 77(1), 117–127
  • [14] Varouchas J., Kähler spaces and proper open morphisms, Math. Ann., 1989, 283(1), 13–52

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_1515_coma-2015-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.